R1 2022 Vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 10: Linje 10:


==Oppgave 1==
==Oppgave 1==
===a)===
$f(x)=x^3+ln\,x$
$f'(x)=3x^2+\frac{1}{x}$
===b)===
$g(x)=x\cdot e^{2x}$


==Oppgave 2==
==Oppgave 2==

Sideversjonen fra 29. des. 2022 kl. 09:10

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Videoløsning del 1 av Lektor Lainz

Løsning som pdf av Farhan Omar

DEL 1

Oppgave 1

a)

$f(x)=x^3+ln\,x$

$f'(x)=3x^2+\frac{1}{x}$

b)

$g(x)=x\cdot e^{2x}$

Oppgave 2

$e^{2x}-e^x=2$

$(e^x)^2-e^x-2=0$

Setter $u=e^x$

$u^2-u-2=0$

$(u+1)(u-2)=0$

$u=-1 \vee u=2$

$e^x=-1 \vee e^x=2$

Forkaster det negative svaret fordi ln(-1) ikke er definert.

$ln(e^x)=ln(2)$

$x=ln(2)$

Oppgave 3

$\lim\limits_{x \to 3} \frac{x-3}{x^2+x-12}$

$=\lim\limits_{x \to 3} \frac{x-3}{(x-3)(x+4)}$

$=\lim\limits_{x \to 3} \frac{1}{x+4}$

$=\frac{1}{7}$

DEL 2

Oppgave 4

Bruker CAS i Geogebra.

Det tar ca. 7,8 timer før temperaturen i kaffen er mindre enn 40 grader Celsius.