1T 2022 vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 23: Linje 23:
===Oppgave 2===
===Oppgave 2===


$9x^2-30x +r = (3x-s)^2 = 9x^2 - 6sx +s^2 $
Ser at s må være 5 og r lik $s^2$


===Oppgave 3===
===Oppgave 3===

Sideversjonen fra 27. mai 2022 kl. 10:03

Oppgaven som pdf

Diskusjon av oppgaven på matteprat


DEL EN

Oppgave 1

a)

$(x-2)(x+1) =0 $

$ x-2=0 \vee x+1=0 $

$x=2 \vee x=-1$

b)

I området fra -1 til 2 er produktet i a negativt. En mulig ulikhet blir da (x-2)(x-1) > 0. (tegn fortegnsskjema dersom du ikke ser det direkte).

Oppgave 2

$9x^2-30x +r = (3x-s)^2 = 9x^2 - 6sx +s^2 $

Ser at s må være 5 og r lik $s^2$

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6