2P 2022 vår K06 LØSNING: Forskjell mellom sideversjoner
Linje 36: | Linje 36: | ||
==Oppgave 2== | ==Oppgave 2== | ||
$\frac{5\cdot 10^6+1,5\cdot 10^7}{2,5\cdot 10^{-6}}$ | |||
$ = \frac{5\cdot 10^6+15\cdot 10^6}{2,5\cdot 10^{-6}}$ | |||
$ = \frac{20\cdot 10^6}{2,5\cdot 10^{-6}}$ | |||
$ = 8\cdot 10^{6-(-6)}$ | |||
$ = 8\cdot 10^{12}$ | |||
==Oppgave 3== |
Sideversjonen fra 26. mai 2022 kl. 10:17
Diskusjon av denne oppgaven på matteprat
DEL 1
Oppgave 1
a)
Skriver tallene i stigende rekkefølge:
2 2 4 4 5 5 5 6 6 10
Medianen gjennomsnittet av de to midterste tallene, som begge er 5. Medianen er altså $5$.
Gjennomsnitt: $\frac{2+2+4+4+5+5+5+6+6+10}{10}=\frac{49}{10}=4,9$
Typetallet er det tallet som forekommer flest ganger, nemlig $5$.
Variasjonsbredden er differansen mellom det høyeste og det laveste tallet: $10-2 = 8$
b)
For å finne relativ frekvens for fem fjellturer, tar vi antall forekomster av 5 fjellturer, og deler på antall år med fjellturer:
$\frac{3}{10}=0,3$.
Det forteller oss at 30% av årene, har Sebastian gått 5 fjellturer.
For å finne kumulativ frekvens, legger vi sammen antall forekomster av 5 eller færre fjellturer i året:
$2+2+3 = 7$
Det forteller oss at 7 av årene, har Sebastian gått 5 eller færre fjellturer i året.
Oppgave 2
$\frac{5\cdot 10^6+1,5\cdot 10^7}{2,5\cdot 10^{-6}}$
$ = \frac{5\cdot 10^6+15\cdot 10^6}{2,5\cdot 10^{-6}}$
$ = \frac{20\cdot 10^6}{2,5\cdot 10^{-6}}$
$ = 8\cdot 10^{6-(-6)}$
$ = 8\cdot 10^{12}$