1T 2021 vår K06 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 38: Linje 38:




lg (1) , sin (20), sin ( 60), $( \frac{3}{4}^{-1}$
lg (1) , sin (20) , sin ( 60) , $( \frac{3}{4})^{-1}$


===Oppgave 3===
===Oppgave 3===

Sideversjonen fra 30. jun. 2021 kl. 05:09

26.05.2021 MAT1013 Matematikk 1T Kunnskapsløftet K06

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas


DEL EN

Oppgave 1

$ \left[ \begin{align*} 2x - y =4 \\ x - 2y = 5 \end{align*}\right] $

$ \left[ \begin{align*} 2x - y =4 \\ x = 2y +5 \end{align*}\right]$


$ \left[ \begin{align*} 2(2y +5) - y =4 \\ x = 2y + 5 \end{align*}\right]$

$ \left[ \begin{align*} 3y = - 6 \\ x = 2y + 5 \end{align*}\right]$

$\left[ \begin{align*} y = -2 \\ x =1 \end{align*}\right] $

Oppgave 2

Sin(60)

$ (\frac{3}{4})^{-1}= \frac 43$

Sin(160)= sin(20)

lg(1) = 0

Sinus avleses på y aksen i enhetssirkelen og er positiv i første og andre kvadrant. Sin(60) > Sin(20).

Vi får i stigende rekkefølge


lg (1) , sin (20) , sin ( 60) , $( \frac{3}{4})^{-1}$

Oppgave 3

$\frac{x}{x-3} + \frac{x-6}{x+3} - \frac{18}{x^2-9} = \frac{x(x+3) +(x-6)(x-3)- 18}{(x-3)(x+3)} = \frac{x^2+3x+x^2-9x+18-18}{(x-3)(x+3)} = \frac{2x^2-6x}{(x-3)(x+3)} = \frac{2x(x-3)}{(x-3)(x+3)} = \frac{2x}{x+3}$

Oppgave 4

$f(x) = (x+4)(x-2) = x^2+2x-8$

En ulikhet som har løsningsmengde $x \in [-4,2] $ er: $f(x) \leq 0$

Oppgave 5

a)

Fornøyd Ikke Fornøyd Sum
VG 1 $48$ $72$ $120$
VG 3 $90$ $60$ $150$
Sum $138$ $132$ $270$

b)

c)

Oppgave 6

Oppgave 7

$3^{-2} \frac{a^{\frac 14} \cdot \sqrt{a^3}}{(a^{\frac 34})^3 \cdot a^0} =\frac 19 \cdot a^{ \frac 14 + \frac 32 -\frac 94 - 0} = \frac 19 a^{ - \frac 12}$

Oppgave 8

a)

$3^{2x+2} = 81 \\3^{2x+2} = 9^2 \\ 3^{2x+2}= 3^4 \\ 2x+2 =4 \\ x=1$

b)

Oppgave 9

Oppgave 10

Oppgave 11

Oppgave 12

Oppgave 13

Oppgave 14

DEL TO