1P 2020 høst LØSNING: Forskjell mellom sideversjoner
Linje 84: | Linje 84: | ||
==Oppgave 6== | ==Oppgave 6== | ||
===a)=== | |||
Trekant ABC er rettvinklet. Bruker Pytagorassetningen for å finne lengden BC. | |||
$AC^2+BC^2=AB^2 \\ 6^2+BC^2=10^2 \\ BC^2 = 100-36 \\ BC = \sqrt{64} \\ BC = 8$ | |||
BC = 8 m. | |||
===b)=== | |||
$\angle CDB = 180^{\circ}-90^{\circ}=90^{\circ}$. | |||
Trekant ABC og trekant BCD har en felles vinkel, $\angle B$. | |||
Trekant ABC og trekant BCD har begge en 90 graders vinkel. | |||
Dersom to trekanter har to parvis like store vinkler, er disse trekantene formlike. Trekant ABC og trekant BCD er derfor formlike. | |||
===c)=== |
Sideversjonen fra 28. nov. 2020 kl. 20:06
Diskusjon av denne oppgaven på matteprat
Videoløsning del 1 laget av Lektor Lainz
DEL 1
Oppgave 1
Leser av punktet (0,5000) og (5,7000). Finner stigningstallet til linjen, som også er prisen per kjøretime:
$a=\frac{y_2-y_1}{x_2-x_1} = \frac{7000-5000}{5-0}=\frac{2000}{5}=400$
Erik må betale 400 kr for hver kjøretime.
Oppgave 2
Antall deler: $5+7=12$
Antall elever per del: $\frac{24}{12}=2$
Antall jenter i klassen: $5\cdot 2 = 10$
Det er 10 jenter i klassen.
Oppgave 3
a)
Det er 1 L, det vil si 10 dL, filterkaffe på 8 kopper.
Antall desiliter filterkaffe per kopp: $\frac{10}{8} = \frac{5}{4} = 1,25$
Det vil bli 1,25 dL filterkaffe per kopp.
b)
Bruker forholdsregning. Det er 6 strøkne måleskjeer for 1 L filterkaffe, og x strøkne måleskjeer for 1,5 L filterkaffe. Vi antar at forholdet mellom antall strøkne kaffeskjeer og antall liter filterkaffe skal være det samme.
$\frac{x}{1,5}=\frac{6}{1} \\ x = 6\cdot 1,5 \\ x=9$
Kaffekalkulatoren vil beregne 9 strøkne måleskjeer til 1,5 L filterkaffe.
Oppgave 4
a)
Sidene i kvadratet har sidelengde 2s. Trekanten CED er likebeint, der CE = DE. Vi har fra figuren at $\angle EFC = 90^{\circ}$. Punkt F er derfor midtpunktet i DC, og DF = FC = s.
Trekanten FCE har en vinkel på 90 grader og en vinkel på 45 grader. Den siste vinkelen, $\angle CEF$, må derfor være $180-90-45 = 45$ grader. Trekant FCE har to like store vinkler, og er derfor likebeint. Vi har $EF= FC= s$.
Areal av trekanten CED: $A=\frac{g\cdot h}{2}=\frac{DC\cdot EF}{2}=\frac{2s\cdot s}{2} = s^2$
Areal av kvadratet ABCD: $A= 2s\cdot 2s = 4s^2$
Areal av figuren totalt: $A=s^2+4s^2 = 5s^2$, som skulle vises.
b)
Arealet av trekant CED skal være $36 cm^2$.
$s^2=36 \\ s= \sqrt{36} \\ s = 6$
Sidelengden i kvadratet er 2s. $2s = 2\cdot 6 = 12$
Sidelengden i kvadratet må være 12 cm.
Oppgave 5
a)
$P(\overline{C} \cap \overline{G})=P(\overline{C})\cdot P(\overline{G})= \frac{8}{10}\cdot \frac{7}{9}=\frac{56}{90}=\frac{28}{45}$
Sannsynligheten for at verken Charlotte eller Gunnar blir trukket ut er $\frac{28}{45}$
b)
$P(C \cap G) = P(C)\cdot P(G) = \frac{2}{10} \cdot \frac{1}{9} = \frac{2}{90} = \frac{1}{45}$
Sannsynligheten for at det blir Charlotte og Gunnar som skal lage kampoppsettet er $\frac{1}{45}$
Oppgave 6
a)
Trekant ABC er rettvinklet. Bruker Pytagorassetningen for å finne lengden BC.
$AC^2+BC^2=AB^2 \\ 6^2+BC^2=10^2 \\ BC^2 = 100-36 \\ BC = \sqrt{64} \\ BC = 8$
BC = 8 m.
b)
$\angle CDB = 180^{\circ}-90^{\circ}=90^{\circ}$.
Trekant ABC og trekant BCD har en felles vinkel, $\angle B$.
Trekant ABC og trekant BCD har begge en 90 graders vinkel.
Dersom to trekanter har to parvis like store vinkler, er disse trekantene formlike. Trekant ABC og trekant BCD er derfor formlike.