R1 2018 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 135: Linje 135:
$f'(x)= 2e^{2x}-4e^x$
$f'(x)= 2e^{2x}-4e^x$


$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ \text{Setter} \,u = e^x \\ 2u(u-2)= 0 \\ u = 0 \vee u = 2 \\ e^x = 0 \vee e^x = 2 \\ x = ln 0 \vee x = ln 2 \\ x = ln 2 \approx 0,69$
$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ \text{Setter} \,u = e^x \\ 2u(u-2)= 0 \\ u = 0 \vee u = 2 \\ e^x = 0 \vee e^x = 2 \\ \xcancel{x = ln 0} \vee x = ln 2 \\ x = ln 2 \approx 0,69$


Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.
Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.
Linje 148: Linje 148:


===c)===
===c)===
$f' '(x)=4e^{2x}-4e^x = 4e^x(e^x-1)$
$f' '(x)=0 \\ 4e^x(e^x-1)  = 0 \\ 4e^x = 0 \vee e^x = 1 \\ \xcancel{x = ln0} \vee x=ln1 \\ x=0$
Finner funksjonsverdien i x = 0.
$f(0)=e^{2\cdot 0}-4e^0+3 = 1-4+3 = 0$
Grafen til <i>f</i> har et vendepunkt i (0,0).
===d)===

Sideversjonen fra 26. jul. 2020 kl. 17:30

Oppgaven som pdf (scannet)

Diskusjon av denne oppgaven på matteprat

Løsningsforslag (pdf) (open source, meld fra om forbedringer eller feil her)

Løsningsforslag av LektorNilsen (pdf)

Løsning som video av Lektor Håkon Raustøl

DEL 1

Oppgave 1

a)

$f(x)=x^4-x+2$

$f'(x)=4x^3-1$

b)

$g(x)=x^3\cdot ln(x)$

$g'(x)=3x^2\cdot ln(x) + x^3 \cdot \frac{1}{x} = 3x^2ln(x)+x^2$

c)

$h(x)=e^{2x^2+x}$

$h'(x)=(4x+1)e^{2x^2+x}$

Oppgave 2

a)

$\frac{1}{2x-2}+\frac{2}{x-3}-\frac{x-2}{x^2-4x+3} \\ = \frac{1\cdot \color{blue}{(x-3)}}{2(x-1)\color{blue}{(x-3)}}+\frac{2\cdot \color{red}{2(x-1)}}{\color{red}{2(x-1)}(x-3)}-\frac{\color{orange}{2}(x-2)}{\color{orange}{2}(x-1)(x-3)} \\ =\frac{ (x-3) + (4x-4) - (2x-4)}{2(x-1)(x-3)} \\ = \frac{x+4x-2x -3-4+4}{2(x-1)(x-3)} \\ = \frac{3x-3}{2(x-1)(x-3)} \\ = \frac{3(x-1)}{2(x-1)(x-3)} \\ = \frac{3}{2(x-3)} \\ = \frac{3}{2x-6}$

b)

$2ln(x\cdot y^3)-\frac{1}{2}ln(\frac{x^4}{y^2}) \\ = 2(ln(x)+ln(y^3))-\frac{1}{2}(ln(x^4)-ln(y^2)) \\= 2(ln(x)+3ln(y))-\frac{1}{2}(4ln(x)-2ln(y)) \\= 2ln(x)+6ln(y)-2ln(x)+ln(y) \\= 7ln(y)$

Oppgave 3

Vi har punktene A(-2,-1), B(-1, -3), C(3, -1) og D(t,t^2+2) der $t\in R$.

a)

$\vec{AB} = [-1-(-2), -3-(-1)] = [1, -2]$

$\vec{BC} = [3-(-1), -1-(-3)] = [4, 2]$

b)

$[1,-2]\cdot[4,2] = 1\cdot 4 + (-2)\cdot 2 = 4-4 = 0$

Skalarproduktet av $\vec{AB}$ og $\vec{BC}$ er 0, og vi har derfor $\vec{AB}\perp\vec{BC}$

c)

$\vec{CD}=[t-3, t^2+2-(-1)] = [t-3, t^2+3]$

Dersom $\vec{CD}\| \vec{AB}$, så er $\vec{CD} = k\cdot\vec{AB}$

$[t-3,t^2+3]=k\cdot[1,-2]$

Vi får likningssettet:

$I \quad t-3 = k$

$II \quad t^2+3=-2k$

$II \quad t^2+3 = -2 (t-3) \\ \quad t^2 + 3 = -2t+6 \\ \quad t^2 + 2t -3 = 0 \\ \quad (t+3)(t-1) = 0 \\ \quad t = -3 \vee t = 1$

$\vec{CD}\| \vec{AB}$ når $ t = -3 \vee t = 1$.

Oppgave 4

Vi har $f(x)=x^3+k\cdot x + 12$

a)

Dersom $f(x):(x-1)$ skal gå opp, er x=1 et nullpunkt.

$f(1)=0 \\ 1^3+k\cdot 1 + 12 = 0 \\ k+13 = 0 \\ k=-13$

b)

Vi har nå $f(x)=x^3-13x+12$

Utfører polynomdivisjonen:

$f(x)=(x^2+x-12)(x-1) = (x-3)(x-1)(x+4)$

c)

$\frac{x^2+x-12}{x-1} \geq 0 \\ \frac{(x-3)(x+4)}{x-1} \geq 0$

$\frac{x^2+x-12}{x-1} \geq 0$ nå $x\in [-4,1]\cup [3,\rightarrow \rangle$

Oppgave 5

D = defekt

a)

$P(A \cap D) = 0,40 \cdot 0,03 = 0,012 = 1,2 \%$

Sannsynligheten for at laderen kommer fra leverandør A og er defekt, er 1,2%.

b)

$P(D)=P(D|A)\cdot P(A) + P(D|B)\cdot P(B) \\= 0,03\cdot 0,40 + 0,02 \cdot 0,60 = 0,012 + 0,012 = 0,024$

$P(A | D) = \frac{P(A) \cdot P(D|A)}{P(D)} = \frac{0,40 \cdot 0,03}{0,024} = \frac{0,012}{0,024} = 0,5 = 50\%$

Sannsynligheten for at en lader som er defekt, kommer fra leverandør A, er 50%.

Oppgave 6

Vi har $f(x)=e^{2x}-4e^x+3$

a)

$f(x)=0 \\ e^{2x}-4e^x+3 = 0 \\ \text{Setter} \,u = e^x \\ u^2 - 4u + 3 = 0 \\ (u-1)(u-3)=0 \\ u= 1 \vee u = 3 \\ e^x = 1 \vee e^x = 3 \\ x = ln 1 \vee x = ln 3 \\ x = 0 \vee x \approx 1,10 $

Nullpunktene til f er (0,0) og (1.10, 0).

b)

$f'(x)= 2e^{2x}-4e^x$

$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ \text{Setter} \,u = e^x \\ 2u(u-2)= 0 \\ u = 0 \vee u = 2 \\ e^x = 0 \vee e^x = 2 \\ \xcancel{x = ln 0} \vee x = ln 2 \\ x = ln 2 \approx 0,69$

Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.

Finner funksjonsverdien i x = ln 2.

$f(ln 2) = e^{2(ln2)}-4e^{ln2} + 3 = e^{ln2^2}-4\cdot 2 + 3 = 4-8+3 = -1$

Grafen til f har et bunnpunkt i (0.69, -1).

c)

$f' '(x)=4e^{2x}-4e^x = 4e^x(e^x-1)$

$f' '(x)=0 \\ 4e^x(e^x-1) = 0 \\ 4e^x = 0 \vee e^x = 1 \\ \xcancel{x = ln0} \vee x=ln1 \\ x=0$

Finner funksjonsverdien i x = 0.

$f(0)=e^{2\cdot 0}-4e^0+3 = 1-4+3 = 0$

Grafen til f har et vendepunkt i (0,0).

d)