R1 2018 vår LØSNING: Forskjell mellom sideversjoner
Linje 35: | Linje 35: | ||
===a)=== | ===a)=== | ||
$\frac{1}{2x-2}+\frac{2}{x-3}-\frac{x-2}{x^2-4x+3} \\ = \frac{1\cdot \color{blue}{(x-3)}}{2(x-1)\color{blue}{(x-3)}}+\frac{2\cdot \color{red}{2(x-1)}}{\color{red}{2(x-1)}(x-3)}-\frac{\color{orange}{2}(x-2)}{\color{orange}{2}(x-1)(x-3)}$ | $\frac{1}{2x-2}+\frac{2}{x-3}-\frac{x-2}{x^2-4x+3} \\ = \frac{1\cdot \color{blue}{(x-3)}}{2(x-1)\color{blue}{(x-3)}}+\frac{2\cdot \color{red}{2(x-1)}}{\color{red}{2(x-1)}(x-3)}-\frac{\color{orange}{2}(x-2)}{\color{orange}{2}(x-1)(x-3)} \\ =\frac{ (x-3) + (4x-4) - (2x-4)}{2(x-1)(x-3)} \\ = \frac{x+4x-2x -3-4+4}{2(x-1)(x-3)} \\ = \frac{3x-3}{2(x-1)(x-3)} \\ = \frac{3(x-1)}{2(x-1)(x-3)} \\ = \frac{3}{2(x-3)} \\ = \frac{3}{2x-6}$ | ||
===b)=== |
Sideversjonen fra 26. jul. 2020 kl. 11:19
Diskusjon av denne oppgaven på matteprat
Løsningsforslag (pdf) (open source, meld fra om forbedringer eller feil her)
Løsningsforslag av LektorNilsen (pdf)
Løsning som video av Lektor Håkon Raustøl
DEL 1
Oppgave 1
a)
$f(x)=x^4-x+2$
$f'(x)=4x^3-1$
b)
$g(x)=x^3\cdot ln(x)$
$g'(x)=3x^2\cdot ln(x) + x^3 \cdot \frac{1}{x} = 3x^2ln(x)+x^2$
c)
$h(x)=e^{2x^2+x}$
$h'(x)=(4x+1)e^{2x^2+x}$
Oppgave 2
a)
$\frac{1}{2x-2}+\frac{2}{x-3}-\frac{x-2}{x^2-4x+3} \\ = \frac{1\cdot \color{blue}{(x-3)}}{2(x-1)\color{blue}{(x-3)}}+\frac{2\cdot \color{red}{2(x-1)}}{\color{red}{2(x-1)}(x-3)}-\frac{\color{orange}{2}(x-2)}{\color{orange}{2}(x-1)(x-3)} \\ =\frac{ (x-3) + (4x-4) - (2x-4)}{2(x-1)(x-3)} \\ = \frac{x+4x-2x -3-4+4}{2(x-1)(x-3)} \\ = \frac{3x-3}{2(x-1)(x-3)} \\ = \frac{3(x-1)}{2(x-1)(x-3)} \\ = \frac{3}{2(x-3)} \\ = \frac{3}{2x-6}$