S1 2019 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 18: Linje 18:


$x^2-7x+10 =0$
$x^2-7x+10 =0$
Faktoriserer
$x^2-7x+10 = (x-2)(x-5) \\ x=2 \vee x = 5$
Kan også bruke abc - formelen for faktorisering.


===c)===
===c)===

Sideversjonen fra 15. aug. 2019 kl. 13:27

Oppgaven som pdf

Diskusjon av denne oppgaven på matteprat

Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas


DEL EN

Oppgave 1

a)

$3^{x-5} = 81 \\ 3^{x-5} = 3^4 \\ lg (3^{x-5}) = lg(3^4) \\ (x-5)\cdot lg 3 = 4 \cdot lg3 \\ x-5 = 4 \\ x=9 $

b)

$x^2-7x+10 =0$

Faktoriserer

$x^2-7x+10 = (x-2)(x-5) \\ x=2 \vee x = 5$

Kan også bruke abc - formelen for faktorisering.

c)

Oppgave 2

a)

b)

c)

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6

Oppgave 7

Oppgave 8

DEL TO