Løsning del 2 utrinn Vår 19: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 128: Linje 128:
$hs = \sqrt{(21,65m)^2 + (17,5m)^2} = 27,84$
$hs = \sqrt{(21,65m)^2 + (17,5m)^2} = 27,84$


487,17
Arealet av en sideflate blir da


1948,68
$ \frac{35m \cdot 27,84m}{2} = 487,17 m^2$
 
Og arealet av hele overflaten blir
 
$ 4 \cdot 487,17 m^2 = 1948,68m^2 \approx 1950 m^2$


===c)===
===c)===

Sideversjonen fra 5. jun. 2019 kl. 03:12

Del 2 oppgaven som pdf

Løsningsforslag lagt ut på Facebookgruppen Matematikkdidaktikk


Oppgave 1

a)

b)

Variasjonsbredden er største minus minste verdi:

17 098 240 $km^2$ - 8 515 770 $km^2$ = 8 582 470 $km^2$

c)

".... enn arealet av Brasil." Betyr at det er arealet av Brasil man skal sammenligne med:

$\frac{17098240}{8515770} \cdot 100$ % = 200,78%, altså er Russland over dobbelt så stort som Brasil i areal.

Oppgave 2

a)

Vi avleser y aksen og ser at grafen slutter på ca. 6200 km.

b)

På x aksen ser vi at mellom 1 og 6 timer er grafen parallell med x aksen, hvilket betyr at avstanden fra Oslo ikke endrer seg, dvs. hun har en pause på fem timer.

c)

Vi ser fra kartet at New York ligger seks timer etter Oslo. I Oslo er klokka 18:55 når hun lander, det betyr at klokka i New York er 12:55.

Oppgave 3

a)

$2 \cdot 27 + 22 = 76$ GBP

Multiplisert med 11 blir det ca. 836 NOK.

b)

377m = 0,377 km

30 min = 0,5 h

$0,377 : 0,5 = 0,754 $km/h

c)

Forholdet mellom lengde og høyde er 5:3. Dersom lengden til et flagg er 7,5 m er høyden $ \frac{7,5m}{5} \cdot 3 = 4,5 m$

Bredden på stripen er $\frac 15$ av dette, altså $\frac{4,5}{5} = 0,9 m.$

Oppgave 4

Oppgave 5

a)

Prisen for en T - skjorte er 60 kroner.

b)

c)

d)

For at inntektene skal være større enn kostnadene må salget være mer enn 200 og mindre enn1250 T - skjorter. Se figur i c.

Oppgave 6

a)

$365:29,5= 12$

Månen går 12 hele runder rundt jorda i løpet av et år.

b)

$O = 2 \pi \cdot \sqrt{0,5\cdot (a^2 + b^2)} = \\ 2 \pi \cdot \sqrt{0,5\cdot (405000^2 + 363000^2)} = \\ 24.166.348 km$

Omkretsen er ca. 24,2 millioner kilometer.

Oppgave 7

Her er et forslag av mange mulige løsninger.

Avsatte AB 10 cm. Laget regulær trekant. Halverte vinklene for å finn S. Slo den omskrevne sirkelen. Fant P og slo den innskrevne sirkelen.

Oppgave 8

a)

b)

c)

Oppgave 9

a)

I en kvadratisk grunnflate er alle sidene like lange.

$ \sqrt{1225 m^2} = 35m$

b)

Finner først avstanden fra toppen av pyramiden, til midt nede på sidekanten (hs). Finner så arealet av en side, og multipliserer med fire.

$hs = \sqrt{(21,65m)^2 + (17,5m)^2} = 27,84$

Arealet av en sideflate blir da

$ \frac{35m \cdot 27,84m}{2} = 487,17 m^2$

Og arealet av hele overflaten blir

$ 4 \cdot 487,17 m^2 = 1948,68m^2 \approx 1950 m^2$

c)