S1 2018 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 25: Linje 25:
===a)===
===a)===


$(a+2b)²-(2b-a)² \\ = (+4ab+4b²)-(4b²-4ab+) \\ = +4ab+4b² - 4b² +4ab-\\ = 8ab$
$(a+2b)^2-(2b-a)^2 \\ = (a^2+4ab+4b^2)-(4b^2-4ab+a^2) \\ = a^2+4ab+4b^2 - 4b^2+4ab-a^2\\ = 8ab$


===b)===
===b)===


$3^(3) \cdot 3^(0) + 3^{-1}+3^{-2}+3^{-3} \\ = 27 \cdot 1 + \frac{1}{3}+ \frac{1}{3^(2)}+ \frac{1}{3^(3)} \\= 27+ \frac{9}{27}+ \frac{3}{27}+ \frac{1}{27} \\=27 + \frac{13}{27} \\= \frac{729}{27} + \frac{13}{27}  \\ = \frac{742}{27} $
$3^(3) \cdot 3^(0) + 3^{-1}+3^{-2}+3^{-3} \\ = 27 \cdot 1 + \frac{1}{3}+ \frac{1}{3^(2)}+ \frac{1}{3^(3)} \\= 27+ \frac{9}{27}+ \frac{3}{27}+ \frac{1}{27} \\=27 + \frac{13}{27} \\= \frac{729}{27} + \frac{13}{27}  \\ = \frac{742}{27} $

Sideversjonen fra 29. des. 2018 kl. 16:07

Diskusjon av denne oppgaven på matteprat

Oppgaven som pdf

Løsning laget av Marius Nilsen ved Bergen Private Gymnas

DEL 1

Oppgave 1

a)

$x^2-3x+1=3x+8 \\ x^2-6x-7=0 \\ x=\frac{6\pm\sqrt{(-6)^2-4\cdot(-7)}}{2} \\ x=\frac{6\pm 8}{2} \\ x_1=-1 \vee x_2=7$

b)

$lg(x^4)-lg(x^3)+lg(x^2)-lg\,x=6 \\ 4\,lg\,x-3\,lg\,x+2\,lg\,x-lg\,x=6 \\ 2\,lg\,x=6 \\ lg\,x=3 \\ x=10^3\\ x=1000$

c)

$10\cdot 4^x=5\cdot 2^x \\ \frac{2^{2x}}{2^x} = \frac{5}{10} \\ 2^{2x-x} = \frac{1}{2} \\ 2^x = 2^{-1} \\ x=-1$

Oppgave 2

a)

$(a+2b)^2-(2b-a)^2 \\ = (a^2+4ab+4b^2)-(4b^2-4ab+a^2) \\ = a^2+4ab+4b^2 - 4b^2+4ab-a^2\\ = 8ab$

b)

$3^(3) \cdot 3^(0) + 3^{-1}+3^{-2}+3^{-3} \\ = 27 \cdot 1 + \frac{1}{3}+ \frac{1}{3^(2)}+ \frac{1}{3^(3)} \\= 27+ \frac{9}{27}+ \frac{3}{27}+ \frac{1}{27} \\=27 + \frac{13}{27} \\= \frac{729}{27} + \frac{13}{27} \\ = \frac{742}{27} $