S1 2018 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 93: Linje 93:
===c)===
===c)===


Dersom du skal trekke både røde og blå kuler, må du ikke trekke tre røde eller tre blå.
Dersom du skal trekke både røde og blå kuler, må du trekke enten to røde og én blå, eller to blå og én rød.


P(tre røde kuler)=$\frac{3}{7}\cdot\frac{2}{6}\cdot\frac{1}{5}=\frac{1}{35}$
P(både røde og blå kuler) = P(to røde og én blå)+P(to blå og én rød) $\\=\frac{\binom{4}{1}\cdot\binom{3}{2}}{\binom{7}{3}}+\frac{\binom{4}{2}\cdot\binom{3}{1}}{\binom{7}{3}}\\=\frac{4\cdot3}{35}+\frac{6\cdot3}{35}\\=\frac{12+18}{35}\\=\frac{30}{35}\\=\frac{6}{7}$
 
P(både røde og blå kuler) = 1-P(tre blå kuler)-P(tre røde kuler) $\\=1-\frac{4}{35}-\frac{1}{35}\\=\frac{35}{35}-\frac{5}{35}\\=\frac{30}{35}\\=\frac{6}{7}$


Sannsynligheten for at du trekker både røde og blå kuler er $\frac{6}{7}$
Sannsynligheten for at du trekker både røde og blå kuler er $\frac{6}{7}$
NB: du kan løse både oppgave a) og b) ved hjelp av hypergeometrisk sannsynlighet og brukt Pascals trekant for å finne de binomialkoeffisientene du trenger.

Sideversjonen fra 2. aug. 2018 kl. 13:02

oppgaven som pdf

Løsning laget av mattepratbruker Tommy O.

Løsning laget av LektorNilsen (pdf)

diskusjon av oppgaven på matteprat

DEL1

Oppgave 1

a)

$2x^2-5x+1=x-3 \\ 2x^2-5x-x+1+3 = 0 \\ 2x^2-6x+4=0 \quad |:2 \\ x^2-3x+2=0$

Bruker abc-formelen $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, $a=1$, $b=-3$, $c=2$.

$x=\frac{-(-3)\pm\sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot1} \\ x=\frac{3\pm\sqrt{1}}{2} \\ x_1=\frac{3-1}{2} \vee x_2=\frac{3+1}{2} \\ x_1=1 \vee x_2=2$

b)

$2lg(x+7)=4 \quad |:2\\ lg(x+7)=2 \\ 10^{lg(x+7)}=10^2 \\ x+7 = 100 \\ x=93$

c)

$3\cdot2^{3x+2}=12\cdot2^6 \quad |:3 \\ 2^{3x+2} = 4\cdot 2^6 \quad |:2^6 \\ \frac{2^{3x+2}}{2^6} = 4 \\ 2^{3x+2-6}=4 \\ 2^{3x-4}=2^2 \\ 3x-4=2 \\ 3x=6 \\ x=2$

Oppgave 2

<math> \left[ \begin{align*} x^2 + 3y = 7 \\ 3x - y = 1 \end{align*}\right] </math>

Løser likning to med hensyn på y:

$3x-y=1 \\ 3x-1=y \\ y=3x-1$

Bruker innsettingsmetoden og erstatter y med 3x-1 i likning én.

$x^2+3(3x-1) = 7 \\ x^2+9x-3-7=0 \\ x^2 +9x-10=0$

Bruker abc-formelen $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, $a=1$, $b=9$, $c=-10$.

$x=\frac{-9\pm\sqrt{(9)^2-4\cdot 1 \cdot (-10)}}{2\cdot1} \\ x=\frac{-9\pm\sqrt{121}}{2} \\ x_1=\frac{-9-11}{2} \vee x_2=\frac{-9+11}{2} \\ x_1=-10 \vee x_2=1$

Bruker likning to for å finne tilhørende y-verdier:

$y=3x-1 \\ y_1=3\cdot (-10)-1 \quad \vee \quad y_2=3\cdot 1 - 1 \\ y_1=-31 \quad \vee \quad y_2=2$

Løsning: $x_1=-10 \wedge y_1=-31 \quad \vee \quad x_2=1 \wedge y_2=2 $

Oppgave 3

a)

$(2x-3)^2-2x(2x-6)\\=(2x)^2-2\cdot2x\cdot3+3^2-2x\cdot2x-2x\cdot(-6)\\=4x^2-12x+9-4x^2+12x\\=9$

b)

$lg(2a)+lg(4a)+lg(8a)-lg(16a)\\=lg(\frac{2a\cdot4a\cdot8a}{16a})\\=lg(4a^2)\\=lg(2a)^2\\=2lg(2a)$

c)

$\frac{1}{a}+\frac{1}{b}-\frac{a-b}{ab}\\=\frac{1\cdot b}{a\cdot b}+\frac{1\cdot a}{a\cdot b}-\frac{a-b}{ab}\\=\frac{b}{ab}+\frac{a}{ab}-\frac{a-b}{ab}\\=\frac{b+a-a+b}{ab}\\=\frac{2b}{ab}\\=\frac{2}{a}$

Oppgave 4

Kjenner igjen likningen $x^2-3x+2=0$ fra oppgave 1a). Løsningen var $x_1=1$ og $x_2=2$.

Et andregradsuttrykk $ax^2+bx+c$ med nullpunkter $x_1$ og $x_2$ kan faktoriseres slik: $ax^2+bx+c=a(x-x_1)(x-x_2)$

Faktoriserer uttrykket: $x^2-3x+2=(x-1)(x-2)$

Lager fortegnsskjema:

Løsning: $x^2-3x+2\geq0$ når $x\leq1 \wedge x\geq2$

Oppgave 5

a)

b)

Bruker hypergeometrisk sannynlighet, og leser av binomialkoeffisientene i Pascals trekant. (Eksempel: $\binom{7}{3}$ finner du i rad nr.7 og tall nr.3 i raden. Husk å begynne å telle på rad nr.0 og tall nr.0. Hvis du har talt riktig finner du at $\binom{7}{3}=35$).

P(tre blå kuler)=$\frac{\binom{4}{3}\cdot \binom{3}{0}}{\binom{7}{3}}=\frac{4\cdot1}{35}$

Sannsynligheten for at du trekker 3 blå kuler er $\frac{4}{35}$.

c)

Dersom du skal trekke både røde og blå kuler, må du trekke enten to røde og én blå, eller to blå og én rød.

P(både røde og blå kuler) = P(to røde og én blå)+P(to blå og én rød) $\\=\frac{\binom{4}{1}\cdot\binom{3}{2}}{\binom{7}{3}}+\frac{\binom{4}{2}\cdot\binom{3}{1}}{\binom{7}{3}}\\=\frac{4\cdot3}{35}+\frac{6\cdot3}{35}\\=\frac{12+18}{35}\\=\frac{30}{35}\\=\frac{6}{7}$

Sannsynligheten for at du trekker både røde og blå kuler er $\frac{6}{7}$