Linjer i rommet: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
Ingen redigeringsforklaring |
||
Linje 6: | Linje 6: | ||
der <tex>\vec{r_0}</tex> er en (konstant) vektor som er parallell med linja, og <tex>\vec{r_1}</tex> beskriver et eller annet punkt på linja. Dette kan begrunnes geometrisk: Vi tenker oss at vi starter i origo og beveger oss til punktet <tex>\vec{r_1}</tex> på linja. Deretter legger vi til en vektor <tex>\vec{r_0}t</tex> som vi vet ligger parallelt. Ved å variere verdien av <tex>t</tex> varierer vi lengden av den parallelle vektoren, slik at vi hele tiden forflytter oss langs (på) linja. | der <tex>\vec{r_0}</tex> er en (konstant) vektor som er parallell med linja, og <tex>\vec{r_1}</tex> beskriver et eller annet punkt på linja. Dette kan begrunnes geometrisk: Vi tenker oss at vi starter i origo og beveger oss til punktet <tex>\vec{r_1}</tex> på linja. Deretter legger vi til en vektor <tex>\vec{r_0}t</tex> som vi vet ligger parallelt. Ved å variere verdien av <tex>t</tex> varierer vi lengden av den parallelle vektoren, slik at vi hele tiden forflytter oss langs (på) linja. | ||
== Vinkelen mellom linjer i rommet == | |||
Vi kan definere vinkelen <tex>\theta</tex> mellom to romlige linjer som vinkelen mellom vektorene som er parallelle med linjene. Merk at to generelle linjer i rommet ikke nødvendigvis skjærer hverandre. Dersom <tex>\vec{p}</tex> er parallell med den ene linja og <tex>\vec{q}</tex> er parallell med den andre, kan vi bruke definisjonen av skalarproduktet | |||
:<tex>\vec{p}\cdot \vec{q} =|\vec{p}||\vec{q}|\cos(\theta)</tex> | |||
til å bestemme vinkelen mellom linjene. |
Sideversjonen fra 11. feb. 2010 kl. 14:17
For å finne et uttrykk for en linje i rommet trenger vi å vite retningen på linja samt et punkt på linja. En parameterfremstilling vil da generelt være på formen
- <tex>\vec{r}(t)=(x(t),y(t),z(t))= \vec{r_0}t+\vec{r_1}</tex>,
der <tex>\vec{r_0}</tex> er en (konstant) vektor som er parallell med linja, og <tex>\vec{r_1}</tex> beskriver et eller annet punkt på linja. Dette kan begrunnes geometrisk: Vi tenker oss at vi starter i origo og beveger oss til punktet <tex>\vec{r_1}</tex> på linja. Deretter legger vi til en vektor <tex>\vec{r_0}t</tex> som vi vet ligger parallelt. Ved å variere verdien av <tex>t</tex> varierer vi lengden av den parallelle vektoren, slik at vi hele tiden forflytter oss langs (på) linja.
Vinkelen mellom linjer i rommet
Vi kan definere vinkelen <tex>\theta</tex> mellom to romlige linjer som vinkelen mellom vektorene som er parallelle med linjene. Merk at to generelle linjer i rommet ikke nødvendigvis skjærer hverandre. Dersom <tex>\vec{p}</tex> er parallell med den ene linja og <tex>\vec{q}</tex> er parallell med den andre, kan vi bruke definisjonen av skalarproduktet
- <tex>\vec{p}\cdot \vec{q} =|\vec{p}||\vec{q}|\cos(\theta)</tex>
til å bestemme vinkelen mellom linjene.