Løsning del 1 utrinn Vår 17: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 121: Linje 121:


==Oppgave 15==
==Oppgave 15==
===a)===
Starteri origo, en bort og to opp: A ( 1, 2)
===b)===
y = ax + b
Grafen skjærer yaksen i 4 og synker to når man gåren til høyre:
y=-2x + 4


==Opphave 16==
==Opphave 16==

Sideversjonen fra 16. jun. 2017 kl. 13:05

Løsningsforslag for del 1 og del 2 fra matteprat

Del 1

Oppgave1

a)

$657 + 468 = 1125$

b)

$52 \cdot 48= 2496$

Oppgave 2

a)

500 g = 0,5 kg

Vi multipliserer 0,5 kg med 12 og får 6,0 kg.

12 kurver veier 6 kilogram.

b)

12 L = 12 liter = 120 desiliter = 120dL

$120 :4= 30$

Man trenger 30 flasker.

Oppgave 3

$(-2)^2 \cdot 2^0 = 4 \cdot 1=4 \\ -2^2 \cdot 2^1 = -4 \cdot 2 = -8 \\ -(2-2^2)= -(2-4)=2 \\ \frac{2 \cdot (-2)}{2+2} = -1$

Vi ser at uttrykk nr to fra venstre har den laveste verdien.

Oppgave 4

a)

$\frac{1}{6} + \frac{1}{3} = \frac{1}{6} + \frac{2}{6} = \frac{1+2}{6} = \frac 12$

b)

$\frac{0,2 \cdot 0,4}{0,16} = \frac {2 \cdot 4}{16} = \frac 12$

Ganget med 100 i teller å nevner, så slipper man unna desimaltallene.

Oppgave 5

Når et punkt A skal speiles om en linje skal avstanden fra punktet til linjen være like langt som fra linjen til "speilpunktet", A'.

Figur fire oppfyller dette kravet.

Oppgave 6

Vi har da to gunnstige ( 3 eller 5), av seks mulige. Sannsynligheten blir da: P( 3 eller 5) = $\frac 26 = \frac 13$

Oppgave 7

Sannsynligheten for mynt (eller kron) er 50% = $ \frac 12$ på ett kast. Kaster vi tre mynter får vi:

P(mynt, mynt, mynt) = P(kron, kron, kron) = $ \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac 18$

Det er en åttenedels sjanse for tre "kron", eller tre "mynt".

Oppgave 8

Overslag: vi runder den ene faktoren opp, og den andre ned:

$88,95 \approx 90$ og $10,21 \approx 10$ og får at prisen var ca. 900 kroner.

Oppgave 9

Kombinatorikk - fakultet:

Første person kan velge mellom 8 stoler. Neste person kan velge mellom 7, osv. De kan altså sette seg på $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 8$! måter.

Oppgave 10

Formelomforming:

$A= \frac{gh}{2} \\ 2A = gh \\h= \frac{2A}{g}$

Oppgave 11

a)

$\frac{a+a+a}{a} = \frac{3a}{a}=3$


b)

$\frac{a^2-b^2}{a-b} = \frac{(a+b)(a-b)}{a-b} = a+b $

Oppgave 12

a)

$4x-4= 11 -x \\4x+ x = 11 + 4 \\ 5x=15 \\ x=3$

b)

$ \frac{x}{6} - \frac{2-x}{4} =2 \\ \frac{2x}{12} - \frac{3(2-x)}{12} =2 \\ 2x - 6+3x = 24 \\ 5x=30 \\ x=6$

Oppgave 13

Avstanden til månen er 384 000 000 m = $3,84 \cdot 10^8 m$.

Oppgave 14

$ \frac 3x = \frac{1}{15000} \\x= 45000$

I virkeliheten er avstanden 45 000 cm eller 450 meter, eller 0,45 km.

Oppgave 15

a)

Starteri origo, en bort og to opp: A ( 1, 2)

b)

y = ax + b

Grafen skjærer yaksen i 4 og synker to når man gåren til høyre:

y=-2x + 4

Opphave 16

a)

Starteri origo, en bort og to opp: A ( 1, 2)

b)

y = ax + b

Grafen skjærer yaksen i 4 og synker to når man gåren til høyre:

y=-2x + 4

Oppgave 17

Oppgave 18

Oppgave 19

Oppgave 20

a)

b)

Oppgave 21

Oppgave 22

Oppgave 23

Oppgave 24

Oppgave 25

a)

b)