Logaritmelikninger: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ny side: Før du leser dette bør du gjøre deg kjent med logaritmer <br> Så langt har vi befattet oss med ligninger der den ukjente er grunntallet. Dersom den ukjente er i eksponenten får vi...
 
Ingen redigeringsforklaring
Linje 1: Linje 1:
Før du leser dette bør du gjøre deg kjent med [[logaritmer]]  
Logaritmen til et tall x med basis b er definert som den inverse funksjonen til <tex>b^x</tex> (b opphøyd i x). En logaritme kan ha forskjellige basiser eller grunntall (større enn null og ikke lik en). Det vanligste grunntallet for en logaritme er 10 og betegnelsen er log eller lg.(Den [[naturlige logaritmen ln]] har [[grunntall e]] og behandles separat.) Dersom andre grunntall brukes er det spesifisert, for eksempel dersom grunntallet er 2 skrives det slik: <tex>log_2 x</tex>.<br><br> Logaritmer med grunntall 10 kalles den briggske logaritmen , etter matematikeren Henry Briggs. Vi har følgende definisjon:<br>
<br>
Så langt har vi befattet oss med ligninger der den ukjente er grunntallet. Dersom den ukjente er i eksponenten får vi ligninger av typen:  
<br>
max = n
<br>
der a, m og n er tall.  


Ligningen løses på følgende måte:  
<blockquote style="padding: 1em; border: 3px dotted blue;">
<tex>10^{log a} = a  </tex><br><br>
<tex>log 1000 = 3\qquad \text{fordi} \qquad 10^3 = 1000 </tex><br><br>
<tex>log 1 = 0 \qquad \text{fordi} \qquad 10^0 = 1 </tex><br><br>
<tex>log 0,01 = -2 \qquad \text{fordi} \qquad 10^{-2} = 0,01 </tex><br><br>


Man kan ikke ta logaritmen til et negativt tall.
</blockquote>




Eksempel:
 
===Logaritmen av en potens===
 
 
 
<blockquote style="padding: 1em; border: 3px dotted blue;">
<tex> log a^x = x \cdot log a </tex>
</blockquote>
<blockquote style="padding: 1em; border: 3px dotted red;">
<tex> log 100^{24} = 24 \cdot log 100 =24 \cdot 2 = 48 </tex>
</blockquote>
 
 
[http://www.matematikk.net/ressurser/oppgaver/kari/vis_oppgaver.php?q=85F%2B860%2B861%2B862%2B863%7Ctimer_off%7Cshow_all%7Cnq%5B5%5D%7Ccat%5B35%5D%7Cdiff%5B0%5D%26quser_submit_step3 Test deg selv]

Sideversjonen fra 30. jan. 2010 kl. 16:41

Logaritmen til et tall x med basis b er definert som den inverse funksjonen til <tex>b^x</tex> (b opphøyd i x). En logaritme kan ha forskjellige basiser eller grunntall (større enn null og ikke lik en). Det vanligste grunntallet for en logaritme er 10 og betegnelsen er log eller lg.(Den naturlige logaritmen ln har grunntall e og behandles separat.) Dersom andre grunntall brukes er det spesifisert, for eksempel dersom grunntallet er 2 skrives det slik: <tex>log_2 x</tex>.

Logaritmer med grunntall 10 kalles den briggske logaritmen , etter matematikeren Henry Briggs. Vi har følgende definisjon:

<tex>10^{log a} = a </tex>

<tex>log 1000 = 3\qquad \text{fordi} \qquad 10^3 = 1000 </tex>

<tex>log 1 = 0 \qquad \text{fordi} \qquad 10^0 = 1 </tex>

<tex>log 0,01 = -2 \qquad \text{fordi} \qquad 10^{-2} = 0,01 </tex>

Man kan ikke ta logaritmen til et negativt tall.



Logaritmen av en potens

<tex> log a^x = x \cdot log a </tex>

<tex> log 100^{24} = 24 \cdot log 100 =24 \cdot 2 = 48 </tex>


Test deg selv