Trigonometriske likninger: Forskjell mellom sideversjoner
Linje 112: | Linje 112: | ||
=== Eksempel 7.=== | === Eksempel 7.=== | ||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;"> | |||
Når vi skal løse trigonometriske ligninger må vi ofte dele den opp i flere trigonometriske grunnligninger før vi kan løse den. Et klassisk eksempel er faktoriseringsmetoden. Vi tar for oss ligningen | |||
<math>\sin\,x\,\cos\,x-cos\,x=0\,,\,x\in [0,2\pi></math> | |||
Selv om det kan være fristende, må du, uansett hva du gjør, ikke dele på <math>\cos\,x</math>. Generellt prøver man å ikke dele eller multiplisere med funksjoner av variabler, fordi du kan miste løsninger, eller lage falske løsninger. Dette gjelder generellt når du deler på null eller multipliserer med null. Istedet faktoriserer vi ligningen: | |||
<math>\cos\,x\,(\sin\,x-1)=0</math> | |||
:Nå ser vi at for at ligningen skal oppfylles, må <math>\cos\,x=0</math> eller <math>\sin\,x-1=0</math>. Vi har klart å redusere den kompositte trigonometriske ligningen til to trigonometriske grunnligninger. | :Nå ser vi at for at ligningen skal oppfylles, må <math>\cos\,x=0</math> eller <math>\sin\,x-1=0</math>. Vi har klart å redusere den kompositte trigonometriske ligningen til to trigonometriske grunnligninger. | ||
Linje 128: | Linje 127: | ||
::<math>\cos\,x=0 \,\Rightarrow\, x=\frac{\pi}{2} \,\vee\, x=\frac{3\pi}{2}</math> | ::<math>\cos\,x=0 \,\Rightarrow\, x=\frac{\pi}{2} \,\vee\, x=\frac{3\pi}{2}</math> | ||
\frac{\pi}{2} , \frac{3\pi}{2} \right}</math> | |||
:'''NB:''' Dersom du på forhånd har sjekket at det du deler eller multipliserer med ikke er lik null, er det greit å gjennomføre operasjonen. Dette kan gjøres ved å plugge inn null for den aktuelle faktoren og se om likningen oppfylles. | :'''NB:''' Dersom du på forhånd har sjekket at det du deler eller multipliserer med ikke er lik null, er det greit å gjennomføre operasjonen. Dette kan gjøres ved å plugge inn null for den aktuelle faktoren og se om likningen oppfylles. |
Sideversjonen fra 30. sep. 2016 kl. 12:49
Det finnes forskjellige typer trigonometriske ligninger og ofte er det forskjellige måter å løse de på. Nedenfor følger en oversikt over de vanligste typene og et forslag til hvordan de kan løses.
1)
$a cos^2 x + b cos x + c = 0 \quad $ eller $ \quad a sin^2 x + b sin x + c = 0$
Løses ved å erstatt cos x , eventuelt sin x, med u. Løser andregradsligningen og setter løsningen(e) lik cos x (eller sin x) og finner mulige x verdier.
Eksempel 1.
<math>\sin^2x+\sin\,x-1=0\,,\,x\in[0,2\pi></math>
Setter sin x = u og bruker andregradsformelen, og får:
<math>\sin\,x=\frac{\sqrt{5}-1}{2}</math>
<math>\sin\,x=\frac{\sqrt{5}+1}{2}</math>
Merk at <math>\frac{\sqrt{5}+1}{2}>1</math>, altså har ikke denne grunnligningen noen løsninger.
Vi står igjen med kun den første trigonometriske grunnligningen. Når vi løser denne, får vi
$x= 0,67 \vee x= 2,48$
2)
Begge sider divideres med cos x (forskjellig fra null). Vi får da en identitet i tan x.
3)
Ligningen løses ved å erstatte cos2 x med 1 - sin2 x
4)
Ligningen løses ved å erstatte $sin2^x$ med $1 - cos^2 x$
Eksempel 4:
- <math>\sin\,x+2cos^2x=1\,,\,x\in[0,2\pi > </math>
- Vi kjenner identiteten <math>\sin^2x+\cos^2x=1</math>. Den kan vi bruke her for å omforme ligningen til
- <math>\sin\,x+2-2\sin^2x=1</math>
- <math>2\sin^2x-\sin\,x-1=0</math>
- Dette er en andregradslikning i <math>\sin\,x</math>, som vi kan løse:
- <math>\sin\,x=\frac{1\pm\sqrt{1+8}}{4}=\frac{1\pm 3}{4}</math>
- <math>\sin\,x=\frac{1+3}{4}=1 \,\vee\,\sin\,x=\frac{1-3}{4}=-\frac12</math>
- <math>\sin\,x=1\,\Rightarrow\,x=\frac{\pi}{2}</math>
- <math>\sin\,x=-\frac12\,\Rightarrow\,x=\frac{7\pi}{6} \,\vee\,x=\frac{11\pi}{6}</math>
$x= \frac {\pi}{2} \vee x= \frac{7 \pi}{6} \vee x= \frac{11 \pi}{6}$
5)
Løses ved å dividere begge sider av likhetstegnet med $cos^2 x$
6)
Her må konstantleddet skrives om : $d = d \cdot 1 =d(sin^2 x + cos^2 x)$ . Ligningen løses nå som beskrevet i punktet over.
Eksempel 6.
Vinkelen <math>\varphi</math> ligger i første kvadrant, <math>\varphi =tan^{-1}(1)= \frac {\pi}{4} </math>
Vi får <math>\sqrt 2 sin(x + \frac \pi 4) = 1</math>
Eksempel 7.
Når vi skal løse trigonometriske ligninger må vi ofte dele den opp i flere trigonometriske grunnligninger før vi kan løse den. Et klassisk eksempel er faktoriseringsmetoden. Vi tar for oss ligningen
<math>\sin\,x\,\cos\,x-cos\,x=0\,,\,x\in [0,2\pi></math>
Selv om det kan være fristende, må du, uansett hva du gjør, ikke dele på <math>\cos\,x</math>. Generellt prøver man å ikke dele eller multiplisere med funksjoner av variabler, fordi du kan miste løsninger, eller lage falske løsninger. Dette gjelder generellt når du deler på null eller multipliserer med null. Istedet faktoriserer vi ligningen:
<math>\cos\,x\,(\sin\,x-1)=0</math>
- Nå ser vi at for at ligningen skal oppfylles, må <math>\cos\,x=0</math> eller <math>\sin\,x-1=0</math>. Vi har klart å redusere den kompositte trigonometriske ligningen til to trigonometriske grunnligninger.
- <math>\sin\,x=1 \,\Rightarrow\, x=\frac{\pi}{2}</math>
- <math>\cos\,x=0 \,\Rightarrow\, x=\frac{\pi}{2} \,\vee\, x=\frac{3\pi}{2}</math>
\frac{\pi}{2} , \frac{3\pi}{2} \right}</math>
- NB: Dersom du på forhånd har sjekket at det du deler eller multipliserer med ikke er lik null, er det greit å gjennomføre operasjonen. Dette kan gjøres ved å plugge inn null for den aktuelle faktoren og se om likningen oppfylles.