1T 2016 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 34: Linje 34:


$\frac{x}{4x-8} + \frac{1}{12} - \frac{4x+5}{6x+12} = \\
$\frac{x}{4x-8} + \frac{1}{12} - \frac{4x+5}{6x+12} = \\
\frac{x}{2\cdot2(x-2)} + \frac {1}{2 \cdot 2 \cdot 3}- \frac{4x+5}{2 \cdot 3 (x+2)}= \\ \frac {3x}{12(x-2)} + \frac {(x-2)}{12(x-2)} -\ frac{2(4x+5)}{12(x-2)} = \\ $
\frac{x}{2\cdot2(x-2)} + \frac {1}{2 \cdot 2 \cdot 3}- \frac{4x+5}{2 \cdot 3 (x+2)}= \\ \frac {3x}{12(x-2)} + \frac {(x-2)}{12(x-2)} -\frac{2(4x+5)}{12(x-2)} = \\ $


==Oppgave 9==
==Oppgave 9==

Sideversjonen fra 29. mai 2016 kl. 15:52

Diskusjon av denne oppgaven

Mer diskusjon av denne oppgaven

Løsning av denne oppgaven laget av mattepratbruker LektorH


DEL EN

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

a)

b)

Oppgave 6

Oppgave 7

$2 lg x +8 = 2 - lgx \\ 2lg x + lgx = 2-8 \\ 3lgx = -6 \\ lgx = -2 \\ 10^{lgx} = 10^{-2} \\ x= 10^{-2}= 0,01$

Oppgave 8

$\frac{x}{4x-8} + \frac{1}{12} - \frac{4x+5}{6x+12} = \\ \frac{x}{2\cdot2(x-2)} + \frac {1}{2 \cdot 2 \cdot 3}- \frac{4x+5}{2 \cdot 3 (x+2)}= \\ \frac {3x}{12(x-2)} + \frac {(x-2)}{12(x-2)} -\frac{2(4x+5)}{12(x-2)} = \\ $

Oppgave 9

a)

P(3 blå) = $\frac {6}{10} \cdot \frac{5}{9} \cdot \frac 48 = \frac 16$

b)

Dersom han ikke tar minst en rosa tar han bare blå. Denn sannsynligheten kjenner vi fra a. Sannsynligheten for minst en rosa blir da:

P( minst en rosa) = 1 - P( 3 blå) = $\frac 56$

c)

Den rosa ballongen kan trekkes på tre måter, første, andre eller tredje gang:

P( en rosa og to blå) = $3 \cdot \frac{4}{10} \cdot \frac 69 \cdot \frac 58 = 3 \cdot \frac 16 = \frac 12$, altså 50%.

Oppgave 10

Vi observerer at graf A er den eneste som har et minimum for en negativ x verdi. 2x + 6 = 0 gir løsning for x = - 3, altså er

h(x) funksjonen til graf A.

Graf B har ingen nullpunkter : $b^2 - 4ac < 0$

Vi observerer at $x^2 -2x + 9=0$ ikke har noen løsning, altså er

f(x) funksjonen til graf B.

g(x) er da funksjonen til C.

Oppgave 11

a)

$f´(x)= 3x^2-10x+3 \\ f´(2)= 3\cdot 4 - 10 \cdot 2 +3 = -5$

b)

$f(1)= 1-5+3+4 = 3 \\ f(3)= 27 - 45+9+4 = -5$

$\frac{\Delta y}{\Delta x} = \frac {-5-3}{3-1} = -4$

Oppgave 12

a)

BC = 10

Høyde i grå trekant: $h^2 = 100 - 25 \\ h = \sqrt{75} = 5\sqrt3$


Areal: $A= \frac{Gh}{2} = \frac{10 \cdot 5\sqrt3}{2}= 25 \sqrt3$

b)

Oppgave 13

Vi leser av figuren:

$cos 53^{\circ} \approx 0,6 \\ sin 53^{\circ} \approx 0,8$

Tangens:

$tan 53^{\circ} \approx \frac 86 \approx 1,33 $

Oppgave 14

a)

Funksjonen har ekstremalpunkter når den deriverte er null. For x = 0 og x = 4 er det tillfelle. x = 0 er et toppunkt fordi den deriverte skifter fra positiv til negativ verdi, og x = 4 er et bunnpunkt fordi den deriverte skifter fra negativ til positiv verdi.

b)

Likningen for en rett linje er y = ax + b

I punktet (2,-3) er den deriverte lik -2. Det gir y= -2x + b

Setter så punktet (2, -3) inn for x og y for å finne b: $ -3 = -2 \cdot 2 +b$ som gir b=1.

Likningen blir da:

y = -2x + 1