R1 eksempeloppgave 2015 vår LØSNING: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
|||
Linje 64: | Linje 64: | ||
==Oppgave 11== | ==Oppgave 11== | ||
$x^2+y^2-4x+6y-12 =0 \\ (x^2-4x+4)+(y^2+6y+9) -12-13 =0 \\(x-2)^2 + (y+3)^2 = 5^2$ | |||
==Oppgave 12== | ==Oppgave 12== |
Sideversjonen fra 25. jan. 2016 kl. 06:27
- Løsningsforslag (pdf) fra bruker joes. Send gjerne en melding hvis du oppdager feil i fasit. På forhånd, takk.
DEL EN
Oppgave 1
a)
$f(t)=0.02t^3+0.6t^2+4.1\\f'(t)=0.06t^2+1.2t$
b)
$g(x)=x^2\cdot \ e^{2x}\\g'(x)=2x\cdot \ e^{2x}+x^2\cdot \ 2e^{2x}=2x\cdot \ e^{2x} (1+x)$
c)
$h(x)=ln(x^3+1)\\h'(x)=(ln u)'\cdot \ (x^3+1)' \ = \frac{1}{x^3+1}\cdot \ 3x^2 \ =\frac{3x^2}{x^3+1}$
Opgave 2
a)
$f(x)=x^3+ax^2-13x+15$. Hvis $f(x)$ er delelig med $(x-1)$, er $f(1)=0 \\ $ $1^3+a\cdot \ 1^2-13 \cdot \ 1 +15=0 \\ 1+a+2=0 \\ a=-3$
b)
$ \quad(x^3-3x^2-13x+15):(x-1)=x^2-2x-15\\-(x^3-x^2) \\ \quad \quad -2x^2-13x \\ \quad \quad -(-2x^2+2x) \\ \quad \quad \quad \quad -15x+15 $
Faktoriserer $x^2-2x-15$ ved abc-formelen. Da får vi at $x=5 \vee x=-3$
$f(x)$ kan da skrives som $(x+3)(x-1)(x-5)$ , hvor alle ledd er av første grad.
Oppgave 3
Oppgave 4
Oppgave 5
a)
b)
Oppgave 6
Oppgave 7
Oppgave 8
a)
b)
c)
Oppgave 9
a)
b)
c)
Oppgave 10
a)
b)
c)
Oppgave 11
$x^2+y^2-4x+6y-12 =0 \\ (x^2-4x+4)+(y^2+6y+9) -12-13 =0 \\(x-2)^2 + (y+3)^2 = 5^2$