1T 2015 høst LØSNING: Forskjell mellom sideversjoner
Linje 51: | Linje 51: | ||
===Oppgave 6=== | ===Oppgave 6=== | ||
$\frac{x+1}{x-1} - \frac{x-3}{2x-2} + \frac 12 =\\$ | |||
===Oppgave 7=== | ===Oppgave 7=== |
Sideversjonen fra 13. des. 2015 kl. 21:21
DEL EN
Oppgave 1
$1,8 \cdot 10^{12} \cdot 0,0005 = \\ 1,8 \cdot 10^{12} \cdot 5 \cdot 10^{-4} = \\ 1,8 \cdot 5 \cdot 10^{12-4} = \\ 9,0 \cdot 10^{8}$
Oppgave 2
<math> \left[ \begin{align*}2x+3y = 13 \\ 4x-2y=2 \end{align*}\right] </math>
Ganger første likning med -2:
<math> \left[ \begin{align*}-4x-6y = -26 \\ 4x-2y=2 \end{align*}\right] </math>
Legger sammen likningnene og x forsvinner:
<math> \left[ \begin{align*}-8y= -24 \end{align*}\right] </math>
Det gir y = 3. Innsatt i en av likningnen gir det x = 2. Løsning er altså $x=2 \wedge y=3$
Oppgave 3
$-2x^2+6x<0 \\ -2x(x- 3)<0$
Fortegnsskjema:
Oppgave 4
$( \sqrt 2 )^2+ \frac {\sqrt8}{2} +\sqrt[3]{8} - \frac{\sqrt[3]{128}}{\sqrt[3]{2}}= \\ 2 - \sqrt 2 + 2 - \frac{\sqrt[3]{2^7}}{\sqrt[3]{2}} = \\2 - \sqrt 2 + 2 - \frac{4\sqrt[3]{2}}{\sqrt[3]{2}} = \\ -\sqrt 2 $
Oppgave 5
$x^2+bx +c=0$ Løsninger $x_1= -4 \wedge x_2=2$
Setter inn for x:
$16-4b+c=0 \wedge 4+2b+c=0$
Multipliserer den siste med -1 og legger dem sammen:
12- 6b = 0 gir b = 2. Ved innsettin finner man c = -8
$x^2+2x - 8=0$
Oppgave 6
$\frac{x+1}{x-1} - \frac{x-3}{2x-2} + \frac 12 =\\$
Oppgave 7
$\frac{x^2-4xy+4y^2}{3xy- 6y^2} = \\\frac{(x-2y)^2}{3y(x-2y)} = \\ \frac{x-2y}{3y}$
Oppgave 8
$2^{4x} \cdot 2^{x^2} = 32 \\ 2^{x^2+4x} = 2^5 \\ x^2+4x-5=0 \\ x= \frac{-4 \pm \sqrt{16+20}}{2} = \\ x= -5 \vee x = 1$
Oppgave 9
Katetene er like lange. Lengde x:
$x^2 + x^2 = ( \sqrt2)^2 \\ 2x^2=2 \\ x =1$
Arealet blir da halvparten av en ganger en. A = 0,5
Oppgave 10
a)
$f(x)= x^2-x-2$
$f(x)=0 \\ x^2-x-2 =0 \\ x= \frac{1 \pm \sqrt{1+8}}{2} \\ x= -1 \vee x = 2$
Nullpunkter er (-1,0) og (2, 0)
b)
Koefisienten foran andregradsleddet er positiv, det betyr at grafen vender sin hule side opp, og har et minimumspunkt. Dette ligger på symmetrilinja som er x= 0,5.
$f(0,5) =$