S1 eksempeloppgave 2015 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 116: Linje 116:


==Oppgave 13==
==Oppgave 13==
==DEL TO (NB: Nå kun to timer)==
==Oppgave 1==
==Oppgave 2==
==Oppgave 3==
==Oppgave 4==
==Oppgave 5==
==Oppgave 6==

Sideversjonen fra 20. apr. 2015 kl. 10:49

DEL EN ( NB: Nå tre timer)

Oppgave 1

a)

$f(x)=3x^2-4x+2 \\ f ´(x)= 6x-4$

b)

$g(x)= 3x^3-3 \\ g ´(x)= 9x^2 \\ g ´(2) = 9 \cdot 4 = 36$

Oppgave 2

a)

$\frac{2^{-1}\cdot a \cdot b^{-1}}{4^{-1} \cdot a^{-2} \cdot b^2} = \frac{4 a^3}{2b^3} = 2 (\frac ab)^3$

b)

$lg(a^2b)+lg(ab^2)+lb(\frac{a}{b^3}) = 2lga+ lgb + lga + 2lgb + lga - 3lgb = 4lga$

c)

$ \frac{3a^2-75}{6a+30} = \frac{3(a+5)(a-5)}{6(a+5)}= \frac{a-5}{2}$

Oppgave 3

a)

$\frac{61^2-39^2}{51^2-49^2} = \\ \frac{(61+39)(61-39)}{(51+49)(51-49)} =\\ \frac{100 \cdot 22}{100 \cdot 2} =11 $

b)

$1997 \cdot 2003 - 1993 \cdot 2007 = \\ (2000 - 3)(2000 + 3) - ( 2000 - 7)( 2000+7) \\ 2000^2 -3^2 - 2000^2 + 7^2 \\ -9 + 49 = 40$

Oppgave 4

$f(x) = g(x) \\ x^2-x-2 = x+1 \\ x^2-2x-3 = 0 \\ x= \frac{2 \pm \sqrt{4+12}}{2} \\ x=-1 \vee x= 3 \\ g(-1)=0 \wedge g(3)= 4 \\$


Skjæringspunktene mellom f og g er (-1, 0) og (3,4)

Oppgave 5

a)

$3x^2=18-3x \\ 3x^2+3x-18=0 \\ x^2 +x -6 =0 \\ x= \frac{-1 \pm \sqrt{1+24}}{2} \\ x= \frac{-1 \pm 5}{2} \\ x= -3 \vee x=2$

b)

$3 \cdot 2^x =24 \\ 2^x= 8 \\ 2^x=2^3 \\ x=3$

c)

$3^8+3^8+3^8+3^8 +3^8+3^8+3^8+3^8+3^8 = 3^x\\ 9 \cdot 3^8= 3^x \\ 3^{10} = 3^x \\ 10 lg3 = x lg3 \\ x=10$

Oppgave 6

a)

$ y= a \cdot b^x \\ b^x= \frac ya \\x lgb = lg (\frac ya) \\ x = \frac{ lg(\frac ya) }{lgb} $

b

Oppgave 7

a)

b)

Oppgave 8

$f(x)= x^2+2x \quad D_f= \R \\ f ´(x) = 2x+2$

Vi skal bruke definisjonen på den deriverte til å vise dette:

$f´(x) = lim_{\Delta x \rightarrow 0} \frac{f(x+ \Delta x) - f(x)}{\Delta x} \\ =lim_{\Delta x \rightarrow 0} \frac{(x+\Delta x)^2 + 2(x+ \Delta x)-x^2-2x}{\Delta x}\\ =lim_{\Delta x \rightarrow 0} \frac{x^2+ 2x \Delta x + ( \Delta x)^2+2x +2 \Delta x -x^2-2x}{\Delta x}\\ =lim_{\Delta x \rightarrow 0} \frac{ \Delta x ( 2x+ \Delta x +2)}{\Delta x} \\= lim_{\Delta x \rightarrow 0} 2x+ \Delta x +2 \\ = 2x+2$

Oppgave 9

Oppgave 10

TREKANTTALL

a)

n $a_n$ $a_n$ $s_n$ $s_n$
1 8 9 17
2 5 8 13
3 13 17 30
4
5

b)

Oppgave 11

Oppgave 12

Oppgave 13

DEL TO (NB: Nå kun to timer)

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6