1P 2014 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Benris (diskusjon | bidrag)
Ingen redigeringsforklaring
Linje 13: Linje 13:
==Oppgave 3==
==Oppgave 3==
a)  
a)  
$\frac{(x+4) \cdot 3}{2}=9 \\
$\frac{(x+4) \cdot 3}{2}=9\\
\frac{3x+12}{2}=9 \\
\frac{3x+12}{2}=9\\
3x+12=18 \\
3x+12=18\\
3x=6 \\
3x=6 \\
x=2$ \\
x=2$  


b) $\frac{(x+4cm) \cdot 3cm}{2}=9cm^2$
b) $\frac{(x+4cm) \cdot 3cm}{2}=9cm^2$

Sideversjonen fra 25. mai 2014 kl. 09:15

Del 1

Oppgave 1

$6mm \cdot 50 = 300mm = 30cm$

Feilen vil bli 30cm i virkeligheten.

Oppgave 2

$\frac{617L}{15,3L} \approx \frac{615L}{15L} = 41$

Du trenger omtrent 41 kanner.

Oppgave 3

a) $\frac{(x+4) \cdot 3}{2}=9\\ \frac{3x+12}{2}=9\\ 3x+12=18\\ 3x=6 \\ x=2$

b) $\frac{(x+4cm) \cdot 3cm}{2}=9cm^2$

Ligningen er den samme som i oppgave a, derfor er lengden av den andre parallelle siden lik 2cm.

Oppgave 4

$7 200 000 000 \cdot 0.10 = 720 000 000 $

Halvparten av $720 000 000 = 360 000 000 \\ 720 000 000 + 360 000 000 = 1 080 000 000$

Cirka 1,08 milliarder mennesker har ikke tilgang til rent vann.

Alternativ utregning:

$7,2 \cdot 10^9 \cdot 1,5 \cdot 10^-1 = 10,8 \cdot 10^8 = 1,08 \cdot 10^9$

Oppgave 5

$\frac{100}{500000kr}= \frac{x}{600000kr} \\ x = \frac{100 \cdot 600000kr}{500000kr}=120$

KPI var 120 dette året.

Oppgave 6

Liter saft totalt: $0,2L \cdot 500=100L$

Ren saft: $\frac{1}{10} \cdot 100L = 10L$

Det går 10L ren saft med i 100L ferdigblandet saft.

Oppgave 7

a) $ \sqrt{(2,5m)^2 - (1,5m)^2}=\sqrt{6,25m^2 - 2.25m^2}=\sqrt{4m^2}=2m$

b) $A=5m \cdot 2m = 10m^2$ $V_{jord}=$10m^2 * 0,1m = 1m^3 = 1000L$

Antall sekker: $\frac{1000L}{35L} = 28,571$

Du trenger 29 sekker.

Alternativ utregning:

$30\cdot35L = 1050L$

Man kan bare trekke fra 35L én gang uten at det går under 1000L. Du trenger derfor 29 sekker.

Oppgave 8

a)

Januar: $8 \cdot 20kr + 160kr = 320kr$

Februar: $14 \cdot 20kr + 160kr = 440kr$

b)

c) Lagde en ny funksjon hvor y = 400 i GeoGebra, brukte skjæringsverktøyet og så at grafene skjærte ved x = 12. Hun må altså trene 12 ganger for at avtalene skal være like billig. Derfor må hun trene 13 ganger eller mer for at avtale 2 skal lønne seg.

d)

Avtale 1: produktet av P og A blir større jo flere ganger hun trener. P og A er derfor ikke omvendt proporsjonale størrelser. P delt på A er det samme som stigningstallet til grafen, altså 20, som er proporsjonalitetskonstanten. P og A er proporsjonale størrelser i avtale 1. Avtale 2: Det koster det ingenting for Kari å trene, og derfor er ikke P og A hverken omvendt proporsjonale eller proporsjonale størrelser.