R2 2014 vår LØSNING: Forskjell mellom sideversjoner
Ny side: ===DEL 1=== |
|||
Linje 1: | Linje 1: | ||
=== | ==DEL 1== | ||
===Oppgave 1=== | |||
a) $\displaystyle f(x) = \sin(3x)$ | |||
$\displaystyle f'(x) = 3\cos(3x)$ | |||
b) $\displaystyle g(x) = e^{2x} \cdot \cos x$ | |||
$\displaystyle g'(x) = 2e^{2x} \cdot \cos x + e^{2x} \cdot (-\sin x) = e^{2x} (2\cos x - \sin x)$ | |||
===Oppgave 2=== | |||
a) $\displaystyle \int 2x \cdot \sin (x^2) \, \mathrm{d}x$ | |||
La $\displaystyle u = x^2$ | |||
$\displaystyle \begin{align*} & \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2x \\ | |||
& \Rightarrow \mathrm{d}u = 2x \space \mathrm{d}x \end{align*}$ | |||
$\displaystyle \int 2x \cdot \sin (x^2) \, \mathrm{d}x = \int \sin u \, \mathrm{d}u = -\cos u + C = -\cos (x^2) + C$ | |||
b) $\displaystyle \int_1^{e} x \cdot \ln x \, \mathrm{d}x$ | |||
La $\displaystyle u = \ln x$ og $\displaystyle v' = x$: | |||
$\displaystyle \begin{align*} \int_1^{e} x \cdot \ln x \, \mathrm{d}x & = \left[ \ln x \cdot \frac{1}{2} x^2 - \int \frac{1}{x} \cdot \frac{1}{2} x^2 \right]_1^{e} \\ | |||
& = \left[ \frac{1}{2} x^2 \cdot \ln x - \frac{1}{2} \int x \, \mathrm{d}x \right]_1^{e} \\ | |||
& = \left[ \frac{1}{2} x^2 \cdot \ln x - \frac{1}{2} \cdot \frac{1}{2} x^2 \right]_1^{e} \\ | |||
& = \frac{1}{2} \left[ x^2 \cdot \ln x - \frac{1}{2} x^2 \right]_1^{e} \\ | |||
& = \frac{1}{2} \left( (e^2 \cdot \ln e - \frac{1}{2} \cdot e^2) - (1^2 \cdot \ln1 - \frac{1}{2} \cdot 1^2) \right) \\ | |||
& = \frac{1}{2} \left( (e^2 - \frac{1}{2} \cdot e^2) - (0 - \frac{1}{2}) \right) \\ | |||
& = \frac{1}{2} \left( \frac{e^2}{2} + \frac{1}{2} \right) \\ | |||
& = \frac{1}{2} \cdot \frac{e^2 + 1}{2} \\ | |||
& = \frac{e^2 + 1}{4} \end{align*}$ |
Sideversjonen fra 19. mai 2014 kl. 19:31
DEL 1
Oppgave 1
a) $\displaystyle f(x) = \sin(3x)$
$\displaystyle f'(x) = 3\cos(3x)$
b) $\displaystyle g(x) = e^{2x} \cdot \cos x$
$\displaystyle g'(x) = 2e^{2x} \cdot \cos x + e^{2x} \cdot (-\sin x) = e^{2x} (2\cos x - \sin x)$
Oppgave 2
a) $\displaystyle \int 2x \cdot \sin (x^2) \, \mathrm{d}x$
La $\displaystyle u = x^2$
$\displaystyle \begin{align*} & \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2x \\ & \Rightarrow \mathrm{d}u = 2x \space \mathrm{d}x \end{align*}$
$\displaystyle \int 2x \cdot \sin (x^2) \, \mathrm{d}x = \int \sin u \, \mathrm{d}u = -\cos u + C = -\cos (x^2) + C$
b) $\displaystyle \int_1^{e} x \cdot \ln x \, \mathrm{d}x$
La $\displaystyle u = \ln x$ og $\displaystyle v' = x$:
$\displaystyle \begin{align*} \int_1^{e} x \cdot \ln x \, \mathrm{d}x & = \left[ \ln x \cdot \frac{1}{2} x^2 - \int \frac{1}{x} \cdot \frac{1}{2} x^2 \right]_1^{e} \\ & = \left[ \frac{1}{2} x^2 \cdot \ln x - \frac{1}{2} \int x \, \mathrm{d}x \right]_1^{e} \\ & = \left[ \frac{1}{2} x^2 \cdot \ln x - \frac{1}{2} \cdot \frac{1}{2} x^2 \right]_1^{e} \\ & = \frac{1}{2} \left[ x^2 \cdot \ln x - \frac{1}{2} x^2 \right]_1^{e} \\ & = \frac{1}{2} \left( (e^2 \cdot \ln e - \frac{1}{2} \cdot e^2) - (1^2 \cdot \ln1 - \frac{1}{2} \cdot 1^2) \right) \\ & = \frac{1}{2} \left( (e^2 - \frac{1}{2} \cdot e^2) - (0 - \frac{1}{2}) \right) \\ & = \frac{1}{2} \left( \frac{e^2}{2} + \frac{1}{2} \right) \\ & = \frac{1}{2} \cdot \frac{e^2 + 1}{2} \\ & = \frac{e^2 + 1}{4} \end{align*}$