R1 2012 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 156: Linje 156:
  </tr>
  </tr>
     <tr>
     <tr>
         <td>Buss (kr.)</td>
         <td>Buss </td>
         <td> 600 kr</td>
         <td> </td>
         <td>300 kr</td>  
         <td></td>  
         <td>100 kr</td>
         <td></td>
     </tr>
     </tr>
       <tr>
       <tr>
         <td>Ikke Buss (kr.)</td>
         <td>Ikke Buss </td>
         <td> 600 kr</td>
         <td> </td>
         <td>300 kr</td>  
         <td></td>  
         <td>100 kr</td>
         <td></td>
    </tr>
<tr>
        <td>Total</td>
        <td> 182</td>
        <td>168</td>
        <td>350</td>
     </tr>
     </tr>
    
    
</table>
</table>

Sideversjonen fra 29. okt. 2013 kl. 03:54

Diskusjon av denne oppgaven

Del 1

Oppgave 1

a)

$f(x)=(2x-1)^2 = 4x^2-4x+1$

Da er

<math>f^\prime(x)=8x-4</math>

Alternativt kan vi benytte kjerneregelen med $2x-1$ som kjerne. Vi får da

$f^\prime(x) = 2(2x-1) \cdot (2x-1)^\prime = 2 \cdot (2x-1) \cdot 2 = 8x - 4$.

b)

<math>g(x)=\sqrt{x^2-2x}</math>

Vi bruker kjerneregelen med <math>x^2 - 2x</math> som kjerne. Da har vi

<math>\begin{eqnarray*} g(x) &=&\frac{1}{2\sqrt{x^2 - 2x}} \cdot (x^2 - 2x)^\prime = \frac{1}{2\sqrt{x^2 - 2x}} \cdot (2x-2) \\ &=& \frac{x-1}{\sqrt{x^2-2x}}\end{eqnarray*}</math>

c)

Her har vi et produkt av flere faktorer som avhenger av $x$. Da benytter vi produktregelen. For å derivere $e^{3x}$ bruker vi også kjerneregelen. Vi får

$h^\prime(x) = (x^3)^\prime \cdot e^{2x} + x^3 \cdot (e^{2x})^\prime = 3x^2 e^{2x} + x^3 \cdot 2e^{2x} = x^2e^{2x}(3x+2).$

Oppgave 2

a)

En polynomdivisjon $p(x) : (x-a)$ går opp kun dersom $p(a) = 0$. Her får vi da at $f(3)$ må være 0. Det gir oss ligningen

$f(3) = 0 \ \Leftrightarrow \ 3^3 - 3 \cdot 3^2 + k \cdot 3 + 3 = 0 \ \Leftrightarrow \ 3k + 3 = 0 \ \Leftrightarrow \ k = -1.$

b)

Svaret på polynomdivisjon = <math>x^2-1</math>

Dette gir oss førstegradsfaktorer i (x-1)(x+1)(x-3)

Oppgave 3

a)

Vendepunkt har vi der den dobbeltderiverte er 0 og skifter fortegn. Vi har her

<math>f(x)=x^3-3x^2-x+3</math>

<math>f^\prime(x)=3x^2-6x-1</math>

<math>f^{\prime\prime}(x)=6x-6 = 6(x-1)</math>

Den dobbeltderiverte er null for x = 1. Vendepunkt: (1, f(1)) = (1, 0)

b)

Likning for vendetangent: f ' (1) = - 4

y = ax + b

Har punktet (1, 0) og setter inn:

$0 = -4 \cdot 1 +b \\ b = 4 $

Dvs: y = -4x + 4

Oppgave 4

a)

x = 1 er en løsning av likningen. Elven mister en løsning ved ikke å sjekke faktoren (x-1) lik null.

b)

For å finne skjæringspunktet må man sette $f(x)=g(x)$

$(x-1)(x-3)=x-1$

<math>x^2-4x+3=x-1</math> => <math>x^2-5x+4=0</math>, deretter bruker man ABC-formelen for å finne nullpunktene.

Nullpunktene er; $x=4$ og $x=1$

For å finne skjæringspunktene setter man $f(4)$ og $g(1)$. Da finner man en y-verdi. $f(4)=(4-1)(4-3)$ $f(4)=3$, noe som betyr at $y=3$

$g(1)=1-1=0$, noe som betyr at $y=0$.

Skjæringspunktene ligger i punktene $(4,3)$ og $(1,0)$

Oppgave 5

a)

$AB = \vec v \\ AD = \vec u \\ AC = \vec u + \vec v \\ BD = \vec u - \vec v \\ \vec{AC} \cdot \vec{BD }= (\vec u + \vec v ) \cdot (\vec u - \vec v ) \\ \vec {u^2} - \vec{v^2} =0$

Siden skalarproduktet mellom vektorene er null, står de vinkelrett på hverandre.

b)

$A_{\Box ABCD} = A_{\triangle ABC} + A_{\triangle ACD} \\ \frac 12 AC \cdot FB + \frac 12 AC \cdot DF \\ \frac 12 AC (FB + DF) \\ \frac 12 AC \cdot BD$

Oppgave 6

a)

$3^{4x}+7=34 \\ 3^{4x}=27 \\ 3^{4x}=3^3 \\ lg3^{4x}= lg3^3 \\ 4x = 3 \\ x = \frac 34 $

b)

$lg(x) + lg (x-1) = lg 2 \quad x>1 \\ lg(x^2-x)= lg2 \\ x^2-x = 2 \\ x^2 - x - 2 =0 \\ x =\frac{1 \pm \sqrt{1+8}}{2} \\ x= -1 \vee x=2 $

Oppgave 7

a)

Vinkel er 90 grader kun når skalarproduktet mellom vinkelbeina er null, bare da.

Dvs: $\vec{AB} \cdot \vec{AC} =0$

$ \vec{AB} =[7-3, 3-0] = [4,3] \\ \vec{AC} = [0-3, t-0]= [-3, t] \\ \vec{AB} \cdot \vec{AC} = 0 \\ 4(-3) +3t =0 \\ t =4 \\ \angle BAC = 90 ^{\circ} \quad når \quad t = 4 $

b)

Avstanden fra punktet A (3,0) til vektoren BC = [-7,1] :

Korteste vei fra A til BC er til et punkt D på BC som er slik at AD er normalt på BC.

$ \vec{AD} = \vec{AB} + k \vec{BC} \\ \vec{AD} = [4,3] +k[-7,1] \\ \vec{AD}=[-7k+4,k+3] \\ \vec{AD} \perp \vec{BC} \\ [-7k+4,k+3] \cdot [-7,3] =0 \\ 49k -28 +k +3=0 \\ 50k =25 \\ k= \frac 12 \\ \vec{AD} = [-7 \cdot \frac 12 + 4, \frac 12+3] = [\frac 12, \frac{7}{2}] \\ | \vec{AD} | = \sqrt{\frac 14 + \frac{49}{4}} = \frac{\sqrt{5+}}{2} = \frac{5 \sqrt 2}{2}$

Avstanden fra A til BC er fem halve kvadratroten av to.

DEL 2

Oppgave 1

a)

b)

c)

Oppgave 2

a)

Gutter Jenter Totalt
Buss
Ikke Buss
Total 182 168 350

b)

c)

Oppgave 3

a)

b)

c)

Oppgave 4

a)

b)

c)

Oppgave 5

a)

b)

Oppgave 6

a)

b)

c)