Derivasjonsregler: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Ingen redigeringsforklaring
Linje 9: Linje 9:


<tr>
<tr>
   <td>Potenser<br>[[Bevis]]</td>
   <td>Potenser<br></td>
   <td>f(x) = x<sup>n</sup></td>
   <td>f(x) = x<sup>n</sup></td>
   <td>f '(x) = nx<sup>n-1</sup></td>
   <td>f '(x) = nx<sup>n-1</sup></td>

Sideversjonen fra 28. feb. 2009 kl. 17:11

Nedenfor følger en oversikt over de vanligste derivasjonsreglene for funksjoner med en variabel.

TYPE FUNKSJON DERIVERT
Potenser
f(x) = xn f '(x) = nxn-1
Konstant multiplisert
med funksjon
c f(x) [c f(x)]' = c f '(x)
Konstant f(x)= C C' = 0
Polynom f(x) = g(x)+ h(x) +... f '(x) = g'(x) + h'(x) +...
Eksponentialfunksjonen ax f (x) = ax f '(x) = axln a
Eksponentialfunksjonen ex f (x) = ex f '(x) = ex
Produkt
Bevis
f(x)<tex>\cdot</tex>g(x) [f(x)<tex>\cdot</tex>g(x)]'= f '(x)<tex>\cdot</tex>g(x)+ f(x)<tex>\cdot</tex>g '(x)
Sinus f(x) = sin x f'(x) = cos x
Cosinus f(x) = cos x f'(x) = -sin x
Tangens f (x) = tan x <IMG SRC="der2.gif">
Kvotient <IMG SRC="der5.gif"> <IMG SRC="der6.gif">
Kjerneregel y = g(u)
u er en funksjon av x
y ' = g ' (u)∙u'
Logaritme funksjonen f(x) = ln |x| f ' (x)=<tex>\frac{1}{x}</tex>
Kvadratrot f(x)=<tex>\sqrt{n}</tex> f ' (x)=<tex>\frac{1}{2\sqrt{n}}</tex>