1T 2011 høst LØSNING: Forskjell mellom sideversjoner
Linje 31: | Linje 31: | ||
== h) == | == h) == | ||
<tex> f(x)=x^2+1 \\ \Delta</tex> | <tex> f(x)=x^2+1 \\ \lim_{\Deltax\to\0}\frac{f(x+ \Delta x) - f(x)}{\Delta x} \\ | ||
\lim_{\Deltax\to\0}\frac{f(x+ \Delta x) - f(x)}{\Delta x}</tex> | |||
== Oppgave 2 == | == Oppgave 2 == |
Sideversjonen fra 2. okt. 2012 kl. 05:25
DEL EN
Oppgave 1:
a)
<tex> \frac{x^2-25}{x^2+10x+25} = \frac{(x+5)(x-5)}{(x+5)(x+5)} = \frac{x-5}{x+5}</tex>
b)
<tex> 3^{2x-1} = 1 \\ 3^{2x-1} = 3^0 \\ 2x-1 = 0 \\ x= \frac 12</tex>
c)
<tex> \frac{a^{\frac 14} \sqrt a}{(a^{\frac 34})^3 \cdot a^{-2}}= a^{\frac 14 + \frac 24 - \frac 94 + \frac 84} = a^{\frac 12} = \sqrt a </tex>
d)
<tex> A= \frac {gh}{2} \\6= \frac {5h}{2} \\ h = \frac {12}{5} </tex>
e)
Ser fra figuren at:
<tex> f(x) \leq 0 \quad \quad \quad x \in <\leftarrow,1] \cup [3, \rightarrow> \\ f(x) > g(x) \quad \quad x \in <0,5></tex>
f)
<tex>tanC =2 \\ 2= \frac{AB}{AC} \\ AC = 1,5 </tex>
g)
3 Blå, 2 røde, 1 grønn. Totalen er 6.
1) <tex> \frac 56 \cdot \frac 45 = \frac 23 </tex>
2) <tex> \frac 36 \cdot \frac 25 + \frac 26 \cdot \frac 35 = \frac 25 </tex>
h)
<tex> f(x)=x^2+1 \\ \lim_{\Deltax\to\0}\frac{f(x+ \Delta x) - f(x)}{\Delta x} \\ \lim_{\Deltax\to\0}\frac{f(x+ \Delta x) - f(x)}{\Delta x}</tex>