R1 2009 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 25: Linje 25:
<p></p>
<p></p>
Dersom to vektorer står vinkelrett på hverandre er skalarproduktet lik null.<p></p>
Dersom to vektorer står vinkelrett på hverandre er skalarproduktet lik null.<p></p>
Det er ikke tilfelle her.


== e) ==
== e) ==

Sideversjonen fra 25. sep. 2012 kl. 04:50

Del 1

Oppgave 1

a)

1)

<tex>f(x) = (x^2+1)^4 \\ f'(x)= 4(x^2+1)^3 \cdot 2x = 8x(x^2+1)^3</tex>

(kjerneregelen)

2)

<tex>g(x) = xe^{2x} \\ g'(x)= e^{2x}+xe^{2x} \cdot 2 = e^{2x}(1+2x)</tex>

(produktregelen)

b)

<tex>\lim_{x \to 2} \frac{x^2-2x}{x-2} =\lim_{x \to 2} \frac{x(x-2)}{x-2}=\lim_{x \to 2} x=2</tex>

c)

<tex> \frac{x-2}{x^2+2x}- \frac{x+2}{x^2-2x}-\frac{4x}{x^2-4} = \\ \frac{x-2}{x(x+2)}- \frac{x+2}{x(x-2)} - \frac{4x}{(x+2)(x-2)} = \\ \frac{(x-2)(x-2)-(x+2)(x+2)- 4x^2}{x(x+2)(x-2)} = \\ \frac{x^2-4x+4-(x^2+4x+4)- 4x^2}{x(x+2)(x-2)} = \\ \frac{- 4x}{(x+2)(x-2)} </tex>


d)

<tex> \vec{AB} = [5-(-2), 4-(-1)] = [7,5] \\ \vec{AC} = [4-(-2), 7-(-1)]= [6,8] \\ \vec{BC} = [4-5, 7-4] =[-1,3] </tex>

Dersom to vektorer står vinkelrett på hverandre er skalarproduktet lik null.

Det er ikke tilfelle her.

e)

f)

<tex> lg(\frac{1}{a^2}) + 3lga = lg1 - lga^2+3lga = -2lga+3lga = lga</tex>

Oppgave 2

a)

<tex>\bigtriangleup ABC \sim \bigtriangleup ADC </tex>

Fordi vinkel A er den samme i begge trekanter og vinkel C (i ABC) er lik vinkel D (i ADC).

<tex>\bigtriangleup ABC \sim \bigtriangleup BCD </tex>

Fordi vinkel B er den samme i begge trekanter og vinkel C (i ABC) er lik vinkel D (i BCD).

b)

<tex> \frac{AC}{AB} = \frac{AD}{AC} \\ (AC)^2 = AD \cdot AB </tex>

<tex> \frac{BC}{AB} = \frac{BD}{BC} \\ (BC)^2 = BD \cdot AB</tex>

c)

<tex> (AC)^2 = AD \cdot AB \\ (BC)^2 = BD \cdot AB \\ \text{legger sammen likningene} \\ (AC)^2 + (BC)^2 = AB \cdot (AD + DB) \\ (AC)^2 + (BC)^2 = (AB)^2</tex>