R1 2012 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 34: Linje 34:


== d) ==
== d) ==
<tex>P(x) = x^3-3x^2-x+3 \ P(3) = 27-27-3+3 =0 \ \ P(x):(x-3) \ (x^3-3x^2-x+3): (x-3) =</tex>
<tex>P(x) = x^3-3x^2-x+3 \ P(3) = 27-27-3+3 =0 \ \ P(x):(x-3) \ (x^3-3x^2-x+3): (x-3) =x^2-1
\-(x^3-3x^2)\ \quad \quad \quad \quad\quad \quad \quad  -(-x+3) \ \quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad\quad \quad \quad 0</tex>


== e) ==
== e) ==

Sideversjonen fra 5. jun. 2012 kl. 12:26

DEL EN

Oppgave 1:

a)

1)

<tex>f(x) = 5x^3+x-4 \ f'(x) = 3 \cdot 5x^2 + 1 \ f'(x) = 15x^2 + 1 </tex>

2)

<tex>g(x) = 5e^{3x} \ u = 3x \wedge u' = 3 \ g'(x) = 5e^u \cdot u' \ g'(x) = 15e^{3x}</tex>


b)

<tex> 2ln(\frac{a^2}{b}) + ln (a \cdot b) - 3ln a = \ 2ln a^2 - 2ln b + ln a + lnb - 3 lna = \4ln a - 2ln b + ln a + lnb - 3 lna = \ 2lna - lnb </tex>

c)

<tex> f(x)= x^3-3x</tex>

1)

Nullpunkter:

<tex>x^3-3x = x(x^2-3)= x(x- \sqrt 3 )(x + \sqrt 3) \x = - \sqrt3 \quad \vee \quad x = 0 \quad \vee \quad x= \sqrt3</tex>

2)

<tex>f'(x) = 3x^2-3 \f'(x) = 0 \ 3(x^2-1) = 0 \ x = -1 \quad \vee \quad x = 1 \ f(-1)= 2 \quad \vee \quad f(1) = -2</tex>

Toppunkt (-1,2)

Bunnpunkt (1,-2)

3)


d)

<tex>P(x) = x^3-3x^2-x+3 \ P(3) = 27-27-3+3 =0 \ \ P(x):(x-3) \ (x^3-3x^2-x+3): (x-3) =x^2-1 \-(x^3-3x^2)\ \quad \quad \quad \quad\quad \quad \quad -(-x+3) \ \quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad\quad \quad \quad 0</tex>

e)

Oppgave 2:

Oppgave 3:

DEL TO

Oppgave 4:

Oppgave 5:

Oppgave 6:

Oppgave 7:

Oppgave 8:

Oppgave 9:

Oppgave 10:

Oppgave 11: