R1 2012 vår LØSNING: Forskjell mellom sideversjoner
Linje 34: | Linje 34: | ||
== d) == | == d) == | ||
<tex>P(x) = x^3-3x^2-x+3 \ P(3) = 27-27-3+3 =0 \ \ P(x):(x-3) \ (x^3-3x^2-x+3): (x-3) =</tex> | <tex>P(x) = x^3-3x^2-x+3 \ P(3) = 27-27-3+3 =0 \ \ P(x):(x-3) \ (x^3-3x^2-x+3): (x-3) =x^2-1 | ||
\-(x^3-3x^2)\ \quad \quad \quad \quad\quad \quad \quad -(-x+3) \ \quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad\quad \quad \quad 0</tex> | |||
== e) == | == e) == |
Sideversjonen fra 5. jun. 2012 kl. 12:26
DEL EN
Oppgave 1:
a)
1)
<tex>f(x) = 5x^3+x-4 \ f'(x) = 3 \cdot 5x^2 + 1 \ f'(x) = 15x^2 + 1 </tex>
2)
<tex>g(x) = 5e^{3x} \ u = 3x \wedge u' = 3 \ g'(x) = 5e^u \cdot u' \ g'(x) = 15e^{3x}</tex>
b)
<tex> 2ln(\frac{a^2}{b}) + ln (a \cdot b) - 3ln a = \ 2ln a^2 - 2ln b + ln a + lnb - 3 lna = \4ln a - 2ln b + ln a + lnb - 3 lna = \ 2lna - lnb </tex>
c)
<tex> f(x)= x^3-3x</tex>
1)
Nullpunkter:
<tex>x^3-3x = x(x^2-3)= x(x- \sqrt 3 )(x + \sqrt 3) \x = - \sqrt3 \quad \vee \quad x = 0 \quad \vee \quad x= \sqrt3</tex>
2)
<tex>f'(x) = 3x^2-3 \f'(x) = 0 \ 3(x^2-1) = 0 \ x = -1 \quad \vee \quad x = 1 \ f(-1)= 2 \quad \vee \quad f(1) = -2</tex>
Toppunkt (-1,2)
Bunnpunkt (1,-2)
3)
d)
<tex>P(x) = x^3-3x^2-x+3 \ P(3) = 27-27-3+3 =0 \ \ P(x):(x-3) \ (x^3-3x^2-x+3): (x-3) =x^2-1 \-(x^3-3x^2)\ \quad \quad \quad \quad\quad \quad \quad -(-x+3) \ \quad \quad \quad \quad\quad \quad \quad \quad\quad \quad \quad\quad \quad \quad 0</tex>