R1 2011 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ingen redigeringsforklaring
Linje 50: Linje 50:


== h) ==
== h) ==
== Oppgave 2 ==
== a ==
Vinkelsummen i en trekant er 180 grader<p></p>
<tex>90^{\circ}+u+v = 180^{\circ} = \Rightarrow u+v= 90^{\circ}</tex>
== b ==
== c ==

Sideversjonen fra 13. mar. 2012 kl. 09:53

DEL 1

Oppgave 1

a)

<tex>O(x)= \frac{500}{x} + 8x^2 \\ O(x) = 500x^{-1} + 8x^2 \\ O'(x) = -500x^{-2}+ 16x = \frac{-500}{x^2} + 16x = \frac{-500 +16x^3}{x^2}</tex>

b)

1)

<tex>f(x)= 3ln(2x) \\ f'(x) = 3 \cdot \frac{1}{(2x)}\cdot 2 = \frac {6}{2x} = \frac 3x</tex>

2)

<tex>g(x) = 3x \cdot e^{x^2} \\ g'(x) = 3e^{x^2}+3x \cdot 2x \cdot e^{x^2} = (3+6x^2)e^{x^2}</tex>

c)

1)

<tex>f(x)= x^3-3x^2-13x+15 \\ f(1)= 1-3-13+15 = 0 \\ \quad(x^3-3x^2-13x+15):(x-1)= x^2-2x-15 \\-(x^3-x^2) \\ \quad \quad\quad \quad \quad-2x^2-13x \\\quad \quad\quad -(-2x^2+2x)\\\quad \quad\quad \quad\quad \quad\quad \quad \quad \quad-15x+15 \\ \quad \quad \quad\quad \quad \quad\quad\quad -(-15x+15) \\\quad \quad\quad \quad \quad\quad \quad\quad \quad \quad\quad \quad\quad \quad \quad\quad \quad\quad \quad \quad 0 </tex>

Faktoriserer svaret fra divisjonen:

<tex>x= \frac{2 \pm \sqrt{4+60}}{2}= \frac{2 \pm 8}{2}\\ x=-3 \vee x= 5</tex>

<tex>f(x) = (x-1)(x+3)(x-5)</tex>

2)

<tex>f(x)\leq 0</tex>



<tex>x \in < \leftarrow, -3] \cup [1,5]</tex>

d)

f(0) = 300

Ved begynelsen av utbruddet spruter vulkanen ut 300 tonn per time.

f'(10)=0 og f(10)= -10

Funksjonen når et ekstremalpunkt etter 10 timer, siden den deriverte er null. Den dobbelderiverte er negativ, hvilket betyr at den deriverte avtar og grafen vender sin hule side ned. Det betyr at vulkanen når et maksimum i utbruddet etter 10 timer.

e)

<tex>lg(a^2b)+lg(ab^2)+lg(\frac{a}{b^3})= \\ lga^2 + lgb + lga + lgb^2 + lga - lgb^3 = \\ 2lga + lgb + lga + 2lgb + lga - 3lgb = 4 lga</tex>

f)

g)

h)

Oppgave 2

a

Vinkelsummen i en trekant er 180 grader

<tex>90^{\circ}+u+v = 180^{\circ} = \Rightarrow u+v= 90^{\circ}</tex>

b

c