R1 2008 vår LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 15: | Linje 15: | ||
=== d) === | === d) === | ||
<tex>lg(x \cdot y^2)-2lgy+ lg(\frac{x}{y^2} = lgx + 2lgy - 2lgy +lgx - 2lgy = 2(lgx-lgy)= 2lg ( \frac xy)</tex> | |||
=== e) === | === e) === |
Sideversjonen fra 9. mar. 2012 kl. 06:19
Del 1
Oppgave 1
a)
<tex>f(x) = x^2 \cdot lnx \\ f'(x) = 2x \cdot lnx + \frac 1x \cdot x^2 = 2xlnx+x = (2lnx+1)x</tex>
b)
c)
<tex>\lim_{x\to 8} \frac{x^2-64}{2x+16} =\lim_{x\to 8} \frac{(x-8)(x+8)}{2(x-8)}= \lim_{x\to 8} \frac{(x+8)}{2}=8 </tex>
d)
<tex>lg(x \cdot y^2)-2lgy+ lg(\frac{x}{y^2} = lgx + 2lgy - 2lgy +lgx - 2lgy = 2(lgx-lgy)= 2lg ( \frac xy)</tex>
e)
1)
2)