1T 2010 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 52: Linje 52:
<p></p>
<p></p>
1)Sannsynlighet for å like begge:<p></p>
1)Sannsynlighet for å like begge:<p></p>
<tex>P(liker begge) =\frac{16}{25}\cdot \frav{15}{24} = \frac 35</tex>
<tex>P(liker \quad begge) =\frac{16}{25}\cdot \frac{15}{24} = \frac 35</tex>


== Oppgave 2 ==
== Oppgave 2 ==

Sideversjonen fra 17. feb. 2012 kl. 06:26

DEL 1.

Oppgave 1

a)

<tex> x+y=4 \wedge 3x - y =8</tex>

<tex>y=4-x \wedge 3x-4+x=8</tex>

<tex>y=4-x \wedge 4x=12</tex>

<tex>y=4-x \wedge x=3</tex>

<tex>y=1 \wedge x=3</tex>

<tex>x=3 \wedge y=1</tex>


b)

<tex>- \frac14x+2 =2x- \frac52</tex>

<tex>x+8 =8x- 10</tex>

<tex>- 9x = - 18</tex>

<tex>x = 2</tex>


c)

<tex>5,7 \cdot 10^4 + 3,0 \cdot 10^3 = 57000 + 3000 = 60000 = 6,0 \cdot 10^4</tex>


d)

<tex> \frac{3}{x+4} + \frac{24}{x^2-16} = \frac{3}{x+4} + \frac{24}{(x+4)(x-4)}= \frac{3 (x-4)}{(x+4)(x-4)} + \frac{24}{(x+4)(x-4)}= \\ \frac{3x-12}{(x+4)(x-4)} + \frac{24}{(x+4)(x-4)}= \frac{3x + 12}{(x+4)(x-4)} = \frac{3(x+4)}{(x+4)(x-4)}= \frac{3}{x-4} </tex> e)

f)

g)

1)Sannsynlighet for å like begge:

<tex>P(liker \quad begge) =\frac{16}{25}\cdot \frac{15}{24} = \frac 35</tex>

Oppgave 2

DEL 2


Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6

Oppgave 7

Oppgave 8