R2 2010 vår LØSNING: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
Ingen redigeringsforklaring |
||
Linje 8: | Linje 8: | ||
=== b) === | === b) === | ||
''' 1) ''' Delvis integrasjon gir at <tex>\int 5x\cdot e^{2x}\,dx=5\int x\cdot e^{2x}\,dx=5[\frac{1}{2}xe^{2x}]-\frac{5}{2}\int e^{2x}\,dx=\frac{5}{4}(2x-1)e^{2x}+C</tex> | ''' 1) ''' Delvis integrasjon gir at <tex>\int 5x\cdot e^{2x}\,dx=5\int x\cdot e^{2x}\,dx=5[\frac{1}{2}xe^{2x}]-\frac{5}{2}\int e^{2x}\,dx=\frac{5}{4}(2x-1)e^{2x}+C</tex> | ||
Linje 13: | Linje 14: | ||
''' 2) ''' La <tex>u=x^2-1</tex> så <tex>du=2xdx</tex>, og <tex>\int \frac{6x}{x^2-1}\,dx=\int \frac{3}{u}\,du=3\ln|u|+C=3\ln(|x^2-1|)+C</tex> | ''' 2) ''' La <tex>u=x^2-1</tex> så <tex>du=2xdx</tex>, og <tex>\int \frac{6x}{x^2-1}\,dx=\int \frac{3}{u}\,du=3\ln|u|+C=3\ln(|x^2-1|)+C</tex> | ||
=== c) === | === c) === | ||
Linje 28: | Linje 30: | ||
=== e) === | === e) === | ||
''' 1) ''' <tex>\int_{-3}^2 f(x)\,dx=\int_{-3}^2 g'(x)\,dx= g(2)-g(-3)=28-6=22</tex> | ''' 1) ''' <tex>\int_{-3}^2 f(x)\,dx=\int_{-3}^2 g'(x)\,dx= g(2)-g(-3)=28-6=22</tex> | ||
Linje 33: | Linje 36: | ||
''' 2) ''' <tex>f'(x)=g''(x)=h(x)</tex>, så <tex>\int_{-3}^1 h(x)\,dx=\int_{-3}^1 f'(x)\,dx=f(1)-f(-3)=-2-0=-2</tex> | ''' 2) ''' <tex>f'(x)=g''(x)=h(x)</tex>, så <tex>\int_{-3}^1 h(x)\,dx=\int_{-3}^1 f'(x)\,dx=f(1)-f(-3)=-2-0=-2</tex> | ||
== Oppgave 2 == | == Oppgave 2 == | ||
Linje 47: | Linje 51: | ||
Normalvektoren til planet som går gjennom punktene A, B og C er <tex> \frac17[14, 14, 7] = [2, 2, 1]</tex> | Normalvektoren til planet som går gjennom punktene A, B og C er <tex> \frac17[14, 14, 7] = [2, 2, 1]</tex> | ||
<p></p> | <p></p> Et vilkårlig punkt i planet er <tex>P=(x,y,z)</tex>.<p></p> | ||
<tex> \vec{AP} \cdot \vec{n} = 0 , [x-3 , y-0, z+2] \cdot [2, 2, 1] = 0 </tex><p></p> | <tex> \vec{AP} \cdot \vec{n} = 0 , [x-3 , y-0, z+2] \cdot [2, 2, 1] = 0 </tex><p></p> | ||
<tex> \alpha: 2x + 2y + z - 4 = 0 </tex> | <tex> \alpha: 2x + 2y + z - 4 = 0 </tex> | ||
Linje 54: | Linje 58: | ||
=== c) === | === c) === | ||
Siden linjen står vinkelrett på | Siden linjen står vinkelrett på <tex>\alpha</tex>-planet kan vi bruke <tex>[2, 2, 1]</tex> som retningsvektor for linjen <tex>l</tex>. Linjen går gjennom <tex>P = (5, 4, 4)</tex>. Man får da:<p></p> | ||
[x,y,z] = [5, 4, 4] + t [2, 2, 1] som er ekvivalent med | <tex>[x,y,z] = [5, 4, 4] + t [2, 2, 1]</tex> som er ekvivalent med | ||
<tex> | <tex> | ||
n: | n: | ||
Linje 62: | Linje 66: | ||
y = 4 + 2t \\ | y = 4 + 2t \\ | ||
z = 4 + t \right]</tex><p></p> | z = 4 + t \right]</tex><p></p> | ||
I xz-planet er y = 0. | I xz-planet er y = 0. Parameterfremstillingen for linjen gir da <tex>t=-2</tex>. Innsatt for x og z gir det koordinatet <tex>(1, 0 2)</tex><p></p> | ||
=== d) === | === d) === | ||
Linje 110: | Linje 114: | ||
x= \frac{3\pi}{4} + n \cdot \pi\\ x \in \Big(( \frac{3\pi}{4},0), (\frac{7\pi}{4},0),(\frac{11\pi}{4},0),(\frac{15\pi}{4},0),(\frac{19\pi}{4},0)\Big)</tex> | x= \frac{3\pi}{4} + n \cdot \pi\\ x \in \Big(( \frac{3\pi}{4},0), (\frac{7\pi}{4},0),(\frac{11\pi}{4},0),(\frac{15\pi}{4},0),(\frac{19\pi}{4},0)\Big)</tex> | ||
<p></p> | <p></p> | ||
Regner man om fra eksakte verdier | Regner man om fra eksakte verdier til desimaltall, ser man at det stemmer med grafen i a. | ||
<p></p> | <p></p> | ||
Linje 122: | Linje 126: | ||
=== d) === | === d) === | ||
Man har et toppunkt hver gang den deriverte skifter fortegn fra positiv til negativ. Ved å løse | Man har et toppunkt hver gang den deriverte skifter fortegn fra positiv til negativ. Ved å løse <tex>2\cos(x) - 3\sin(x) = 0</tex> og å tegne fortegnslinje, finner man at det er tilfelle for x=0,59 , x=6,87 og for x= 13,15. Sett disse x verdiene inn i funksjonsuttrykket og man får funksjonsverdien til toppunktene. | ||
<p></p> | <p></p> | ||
e)<p></p> | e)<p></p> |
Sideversjonen fra 6. jan. 2012 kl. 17:29
Del 1
Oppgave 1
a)
<tex>f(x)=x^2\cdot \cos(3x)\Rightarrow f'(x)=(x^2)'\cos(3x)+x^2(\cos(3x))'=2x\cos(3x)-3x^2\sin(3x)</tex>
b)
1) Delvis integrasjon gir at <tex>\int 5x\cdot e^{2x}\,dx=5\int x\cdot e^{2x}\,dx=5[\frac{1}{2}xe^{2x}]-\frac{5}{2}\int e^{2x}\,dx=\frac{5}{4}(2x-1)e^{2x}+C</tex>
2) La <tex>u=x^2-1</tex> så <tex>du=2xdx</tex>, og <tex>\int \frac{6x}{x^2-1}\,dx=\int \frac{3}{u}\,du=3\ln|u|+C=3\ln(|x^2-1|)+C</tex>
c)
Vi multipliserer med integrerende faktor <tex>e^{\int -2\,dx}\,\,=e^{-2x}</tex> og får at <tex>y'e^{-2x}-2e^{-2x}y=3e^{-2x}</tex>. Omskrivning av venstresida gir at <tex>(ye^{-2x})'=3e^{-2x}</tex>. Integrasjon gir at <tex>\int (ye^{-2x})'\,dx=ye^{-2x}=\int 3e^{-2x}\,dx=-\frac{3}{2}e^{-2x}+C</tex>. Multiplikasjon med <tex>e^{2x}</tex> gir at <tex>y=-\frac{3}{2}+Ce^{2x}</tex>. Startbetingelsen gir at <tex>y(0)=2=C-\frac32</tex>, så <tex>C=2+\frac32=\frac{7}{2}</tex>, og løsningen på startverdiproblemet blir <tex>y=\frac{7}{2}e^{2x}-\frac32</tex>
d)
1) <tex>\frac12(\cos(u-v)+\cos(u+v))=\frac12(\cos(u)\cos(v)+\sin(u)\sin(v)+\cos(u)\cos(v)-\sin(u)\sin(v))=\cos(u)\cos(v)</tex>
2) <tex>(\cos(x))^2=\cos(x)\cos(x)=\frac12 (\cos(x-x)+\cos(x+x))=\frac12(1+\cos(2x))</tex>. Videre er <tex>\int (\cos(x))^2\,dx=\int \frac12 (1+\cos(2x))\,dx=\frac12\int 1\,dx+\int \frac12 \cos(2x)\,dx=\frac12 x+\frac14\sin(2x)+C</tex>
e)
1) <tex>\int_{-3}^2 f(x)\,dx=\int_{-3}^2 g'(x)\,dx= g(2)-g(-3)=28-6=22</tex>
2) <tex>f'(x)=g(x)=h(x)</tex>, så <tex>\int_{-3}^1 h(x)\,dx=\int_{-3}^1 f'(x)\,dx=f(1)-f(-3)=-2-0=-2</tex>
Oppgave 2
a)
<tex> \vec{AB} = [-3, 2, 2] </tex> og <tex> \vec{AC} = [-2, -1, 6] </tex>
<tex> \vec{AB} \times \vec{AC} = [12+2,-(-18+4), 3+4]= [14, 14, 7] </tex>
b)
Normalvektoren til planet som går gjennom punktene A, B og C er <tex> \frac17[14, 14, 7] = [2, 2, 1]</tex>
Et vilkårlig punkt i planet er <tex>P=(x,y,z)</tex>.
<tex> \vec{AP} \cdot \vec{n} = 0 , [x-3 , y-0, z+2] \cdot [2, 2, 1] = 0 </tex>
<tex> \alpha: 2x + 2y + z - 4 = 0 </tex>
c)
Siden linjen står vinkelrett på <tex>\alpha</tex>-planet kan vi bruke <tex>[2, 2, 1]</tex> som retningsvektor for linjen <tex>l</tex>. Linjen går gjennom <tex>P = (5, 4, 4)</tex>. Man får da:
<tex>[x,y,z] = [5, 4, 4] + t [2, 2, 1]</tex> som er ekvivalent med <tex> n: \left [ x = 5+ 2t\\ y = 4 + 2t \\
z = 4 + t \right]</tex>
I xz-planet er y = 0. Parameterfremstillingen for linjen gir da <tex>t=-2</tex>. Innsatt for x og z gir det koordinatet <tex>(1, 0 2)</tex>
d)
Et vilkårlig punkt Q på linjen l er gitt ved parameterfremstillingen for l. Man får:
<tex> V_{ABCQ} = \frac16|(\vec{AB} \times \vec {AC}) \cdot \vec{AQ}|</tex>
<tex> \vec{AQ}= [5+2t-3, 4+2t-0, 4+t+2] = [2t+2, 2t+4, t+6] </tex>
innsatt i likningen over gir det:
<tex> V_{ABCQ} = \frac16|[14, 14, 7] \cdot [2t+2, 2t+4, t+6] | = \frac73|5t+12|</tex>
e)
Volumet i pyramiden skal være 42. Innsatt svaret i d gir det |5t+12|= 18 som gir
5t + 12 = 18 eller 5t + 12 = -18
<tex>t = \frac{6}{5}</tex> eller <tex>t = 6</tex>
Man får to løsninger, en "over", og en "under" alfa- planet. Man setter inn i parameterframstillingen for l og får:
<tex> Q= ( \frac{37}{5}, \frac{32}{5}, \frac{26}{5})</tex> eller Q = (-7, -8, - 2).
Del 2
oppgave 3
oppgave 4
<tex> f(x)=5e^{-0,2x} \cdot (sin x + cos x) </tex> der <tex> x \in <0,15> </tex>
a)
Grafen ser slik ut:
Den deriverte er også med (stiplet) fordi den skal finnes i c.
b)
Nullpunkter
f(x)=0
<tex> 5e^{-0,2x}</tex> kan aldri bli null. Man får
<tex>sin x + cos x =0 \\ tan x = -1\\ x= \frac{3\pi}{4} + n \cdot \pi\\ x \in \Big(( \frac{3\pi}{4},0), (\frac{7\pi}{4},0),(\frac{11\pi}{4},0),(\frac{15\pi}{4},0),(\frac{19\pi}{4},0)\Big)</tex>
Regner man om fra eksakte verdier til desimaltall, ser man at det stemmer med grafen i a.
c)
<tex> f'(x)=5(-0,2)e^{-0,2x} \cdot (sin x + cos x)+5e^{-0,2x} \cdot (cos x -sin x)\\ = -e^{-0,2x} \cdot sin x -e^{-0,2x} \cdot cos x +5e^{-0,2x} \cdot cos x - 5e^{-0,2x} \cdot sin x \\ 4e^{-0,2x} \cdot cos x - 6e^{-0,2x} \cdot sin x =2e^{-0,2x} \cdot (2cos x-3sin x) </tex>
d)
Man har et toppunkt hver gang den deriverte skifter fortegn fra positiv til negativ. Ved å løse <tex>2\cos(x) - 3\sin(x) = 0</tex> og å tegne fortegnslinje, finner man at det er tilfelle for x=0,59 , x=6,87 og for x= 13,15. Sett disse x verdiene inn i funksjonsuttrykket og man får funksjonsverdien til toppunktene.
e)
<tex> A= \sqrt{a^2 + b^2} = \sqrt2</tex> Punktet (1,1) ligger i første kvadrant.<tex> tan\phi = 1</tex> Man får da:
<tex> f(x)=5e^{-0,2x} \cdot \sqrt2\cdot sin(x + \frac{\pi}{4}) = 5\sqrt2e^{-0,2x} \cdot sin(x + \frac{\pi}{4}) </tex>
f)
<tex>sin(x + \frac{\pi}{4}) </tex> varier i verdi mellom -1 og 1, avhengig av x. Derfor ligger f mellom q og p, altså i området <tex> \pm5\sqrt2e^{-0,2x}</tex>