R2 2011 vår LØSNING: Forskjell mellom sideversjoner
Ingen redigeringsforklaring |
Ingen redigeringsforklaring |
||
Linje 166: | Linje 166: | ||
Rekken konvergerer siden <tex>|\frac14| <1</tex> | Rekken konvergerer siden <tex>|\frac14| <1</tex> | ||
''' | |||
=== Oppgave 4b) === | |||
''' | |||
Geometrisk ser vi at summen av arealene må konvergere mot arealet av trekanten <tex>ABC</tex>, som er <tex>\frac{8\cdot 16}{2}=64</tex> | |||
Summeformelen for en geometrisk rekke <tex>\sum_{k=0}^{n-1}ar^k=a\frac{1-r^n}{1-r}</tex> gir at | |||
<tex>\lim_{n\to\infty} \sum_{k=0}^{n-1} 48 (\frac{1}{4})^k=48\lim_{n\to\infty}\frac{1-\frac{1}{4}^n}{\frac34}=48\cdot \frac{4}{3}=64</tex> |
Sideversjonen fra 2. jan. 2012 kl. 18:54
Del 1
Oppgave 1a)
1) <tex>f(x)=2\sin(2x)\Rightarrow f'(x)=4\cos(2x)</tex>
2) <tex>g(x)=x^2\cos(2x)\Rightarrow g'(x)=(x^2)'\cos(2x)+x^2(\cos(2x))'=2x\cos(2x)-2x^2\sin(2x)</tex>
3) <tex>h(x)=\frac12 \sqrt{x^2-4x}\Rightarrow h'(x)=\frac12 \frac{x-2}{\sqrt{x^2-4x}}</tex>
Oppgave 1b)
1) Delvis integrasjon gir at <tex>\int xe^x\,dx=[xe^x]-\int e^x\,dx=(x-1)e^x+C</tex>
2) <tex>\int\frac{5x+3}{x^2-9}\,dx=\int\frac{5x+3}{(x-3)(x+3)}\,dx</tex>. Delbrøksoppspaltning gir at
<tex>\frac{1}{(x-3)(x+3)}=\frac16(\frac{1}{x-3}-\frac{1}{x+3})</tex>, så <tex>\int\frac{5x+3}{(x-3)(x+3)}\,dx=\int(5x+3)\frac16(\frac{1}{x-3}-\frac{1}{x+3})\,dx=\frac16 \left(\int \frac{5x+3}{x-3}\,dx-\int \frac{5x+3}{x+3}\,dx\right )</tex>
<tex>\int \frac{5x+3}{x-3}\,dx=\int \frac{5(x-3)+18}{x-3}\,dx=5\int dx+18\int \frac{1}{x-3}\,dx=5x+18\ln(|x-3|)+C_1</tex> og
<tex>\int \frac{5x+3}{x+3}\,dx=\int \frac{5(x+3)-12}{x+3}\,dx=5\int dx-12\int \frac{1}{x+3}\,dx=5x-12\ln(|x+3|)+C_2</tex>, så
<tex>\frac16 \left(\int \frac{5x+3}{x-3}\,dx-\int \frac{5x+3}{x+3}\,dx\right ) =3\ln(|x-3|)+2\ln(|x+3|)+C</tex>
Oppgave 1c)
Sirkelen på figuren er beskrevet ved ligningen <tex>x^2+y^2=1</tex>, så høyden opp til halvsirkelen i øvre halvplan som funksjon av <tex>x</tex>, er <tex>y(x)=\sqrt{1-x^2}</tex>. Arealet av halvsirkelen i øvre halvplan er derfor <tex>\int_{-1}^1 y(x)\,dx=\int_{-1}^1\sqrt{1-x^2}\,dx=\frac12\pi (1)^2=\frac12 \pi</tex>
Oppgave 1d)
1)
Dersom én av vektorene har lengde <tex>0</tex> vil prikkproduktet være <tex>0</tex>. Anta videre at begge vektorene har lengde ulik <tex>0</tex>. Siden prikkproduktet er <tex>0</tex>, må vektorene <tex>\vec{a}</tex> og <tex>\vec{b}</tex> stå normalt på hverandre.
2)
Dersom én av vektorene har lengde <tex>0</tex> vil kryssproduktet være <tex>0</tex>. Anta videre at begge vektorene har lengde ulik <tex>0</tex>. Siden kryssproduktet er <tex>0</tex>, må vektorene <tex>\vec{a}</tex> og <tex>\vec{b}</tex> ligge parallelt.
Oppgave 1e)
Beregner først vektorene <tex>\vec{AB}=(2-1,-1-1,3-(-1))=(1,-2,4)</tex> og <tex>\vec{AC}=(3-1,2-1,2-(-1))=(2,1,3)</tex>. Kryssproduktet <tex>\vec{AB}\times \vec{AC}=(-2\cdot 3-(1\cdot 4), -(1\cdot 3-2\cdot 4), 1\cdot 1-2\cdot (-2))=(-10,5,5)</tex>. For å vise at <tex>\vec{AB}\times \vec{AC}</tex> står vinkelrett på både <tex>\vec{AB}</tex> og <tex>\vec{AC}</tex>, beregner vi <tex>(\vec{AB}\times \vec{AC})\cdot \vec{AB}</tex> og <tex>(\vec{AB}\times \vec{AC})\cdot \vec{AC}</tex> og viser at disse er <tex>0</tex>:
<tex>(\vec{AB}\times \vec{AC})\cdot \vec{AB}=(-10,5,5)\cdot (1,-2,4)=-10-10+20=0</tex> og
<tex>(\vec{AB}\times \vec{AC})\cdot \vec{AC}=(-10,5,5)\cdot (2,1,3)=-20+5+15=0</tex>.
Oppgave 1f)
Induksjonssteg 1: <tex>1=\frac{4^1-1}{3}</tex>, så formelen er riktig for <tex>n=1</tex>
Induksjonssteg 2: Anta at formelen er riktig for <tex>n=k</tex>, så <tex>1+4+16+...+4^{k-1}=\frac{4^k-1}{3}</tex>. Da er <tex>1+4+16+...+4^{k-1}+4^k=\frac{4^k-1}{3}+4^k=\frac{4^k-1+3\cdot 4^k}{3}=\frac{(1+3)4^k-1}{3}=\frac{4^{k+1}-1}{3}</tex>, så formelen er riktig for <tex>n=k+1</tex>, og vi er ferdige.
Oppgave 2a)
Vi multipliserer den førsteordens differensialligningen <tex>y'-2y=5</tex> med integrerende faktor <tex>e^{\int -2\,dx}\,\,=e^{-2x}</tex>, og får
<tex>e^{-2x}y'-2e^{-2x}y=5e^{-2x}</tex>. Venstresiden kan nå omskrives:
<tex>(e^{-2x}y)'=5e^{-2x}</tex>
Vi integrerer ligningen med hensyn på <tex>x</tex>:
<tex>\int (e^{-2x}y)'\,dx=\int 5e^{-2x}\,dx\\ e^{-2x}y=-\frac{5}{2}e^{-2x}+C</tex>, og løser for <tex>y</tex>:
<tex>y=-\frac{5}{2}+Ce^{2x}</tex>. Løsningen verfiseres ved innsetting i den opprinnelige diff.ligningen:
<tex>y'=2Ce^{2x}</tex>, så <tex>y'-2y=2Ce^{2x}-2(-\frac{5}{2}+Ce^{2x})=5</tex>.
Oppgave 2b)
1) <tex>y(0)=-\frac{5}{2}+C=2</tex>, så <tex>C=2+\frac{5}{2}=\frac{9}{2}</tex>
2) Setter inn <tex>y=\frac{49}{2}</tex> i løsningen, og løser for <tex>x</tex>:
<tex>\frac{49}{2}=-\frac{5}{2}+\frac{9}{2}e^{2x}\\ \frac{54}{9}=6=e^{2x}\\ \ln(6)=2x \\ x=\frac{\ln(6)}{2}\approx \frac{1.8}{2}=0.9</tex>
Oppgave 2c)
Tangenten i <tex>(0,2)</tex> har ligning <tex>y=ax+b</tex>, der <tex>a=(-\frac{5}{2}+\frac{9}{2}e^{2x})'(0)=\frac{18}{2}=9</tex>. I tillegg må punktet <tex>(0,2)</tex> ligge på tangentlinja, så <tex>2=a\cdot 0 +b</tex>. Ligningen til tangenten er derfor <tex>y=9x+2</tex>.
Del 2
Oppgave 3a)
Finner toppunktet ved derivasjon av funksjonen <tex>f(x)=2\sqrt{x}e^{-\frac{x}{3}}</tex>: <tex>f'(x)=\frac{(3-2x)e^{-\frac{x}{3}}}{3\sqrt{x}}</tex>. Den deriverte er <tex>0</tex> når <tex>3-2x=0</tex>, så toppunktet er i <tex>x=\frac{3}{2}</tex>. Diameteren til skaftet er størst i toppunktet til grafen til <tex>f(x)</tex>. Størst mulig diameter er derfor <tex>2\cdot f(\frac32 )=4\sqrt{\frac32}e^{-\frac{1}{2}}\approx 2.97</tex>
Oppgave 3b)
Volumet er gitt ved <tex>\int_0^4 \pi f(x)^2\,dx=4\pi\int_0^4 xe^{-\frac{2}{3}x}\,dx=</tex>. La <tex>u=-\frac{2}{3}x</tex>. Integralet blir <tex>9\pi\int ue^u\,du</tex>. Vi bruker resultatet fra oppgave 1b),1): <tex>9\pi\int ue^u\,du=9\pi [(u-1)e^u]=9\pi[(-\frac{2}{3}x-1)e^{-\frac{2}{3}x}]_0^4=9\pi ((-\frac{8}{3}-1)e^{-\frac{8}{3}}+1)=9\pi (-\frac{11}{3}e^{-\frac{8}{3}}+1)</tex>
Oppgave 4a)
1) La <tex>A_0=A</tex> og <tex>B_0=B</tex>. Generelt kan vi skrive arealet av trapeset <tex>A_nB_nB_{n+1}A_{n+1}</tex> som <tex>(A_nB_n+A_{n+1}B_{n+1})\frac{B_nB_{n+1}}{2}</tex>, der <tex>A_0B_0=8</tex>, <tex>B_0B_1=8</tex>, <tex>B_nB_{n+1}=\frac{16}{2^{n+1}}</tex>, <tex>\frac{A_nB_n}{B_nB_{n+1}}=\frac{8}{8}=1</tex> (ved formlikhet av trapesene). Altså er <tex>A_nB_n=B_nB_{n+1}=\frac{16}{2^{n+1}}</tex> og arealet av trapeset <tex>A_nB_nB_{n+1}A_{n+1}</tex> blir <tex>(A_nB_n+A_{n+1}B_{n+1})\frac{B_nB_{n+1}}{2}=(\frac{16}{2^{n+1}}+\frac{16}{2^{n+2}})\frac{16}{2^{n+2}}=\frac{3\cdot16^2}{2^{2n+4}}=3\cdot 2^{4-2n}</tex>. Summen av arealene til trapesene blir derfor
<tex>\sum_{n=0}^\infty 3\cdot 2^{4-2n}=48+12+3+...</tex>
2) Fra forrige deloppgave ser vi at summen av arealene er en geometrisk rekke
<tex>\sum_{n=0}^\infty 3\cdot 2^{4-2n}=48\sum_{n=0}^\infty (\frac{1}{4})^n</tex>
Rekken konvergerer siden <tex>|\frac14| <1</tex>
Oppgave 4b)
Geometrisk ser vi at summen av arealene må konvergere mot arealet av trekanten <tex>ABC</tex>, som er <tex>\frac{8\cdot 16}{2}=64</tex>
Summeformelen for en geometrisk rekke <tex>\sum_{k=0}^{n-1}ar^k=a\frac{1-r^n}{1-r}</tex> gir at
<tex>\lim_{n\to\infty} \sum_{k=0}^{n-1} 48 (\frac{1}{4})^k=48\lim_{n\to\infty}\frac{1-\frac{1}{4}^n}{\frac34}=48\cdot \frac{4}{3}=64</tex>