Funksjoner: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 230: Linje 230:
Fordelen med uttrykk II er at det gir symmetriakse og minimumspunkt direkte. Dersom man multipliserer ut parentesene og trekker sammen ender man opp med uttrykk I.
Fordelen med uttrykk II er at det gir symmetriakse og minimumspunkt direkte. Dersom man multipliserer ut parentesene og trekker sammen ender man opp med uttrykk I.


[http://www.matematikk.net/emner/applets/ggbApplet.php?appid=9 ANIMASJON]
[http://www.matematikk.net/emner/applets/ggbApplet.php?appid=9 [[Bilde:anima.PNG]]]


===Asymptotiske funksjoner===  
===Asymptotiske funksjoner===  

Sideversjonen fra 6. apr. 2009 kl. 05:06

Koordinatsystem

Et koordinatsystem består av to tallinjer som står vinkelrett på hverandre. Vi kaller disse tallinjene for akser. Punktet der aksene krysser hverandre kalles for origo.Begge aksene har verdien null i origo. Den vannrette aksen kalles for x- aksen eller første aksen. Den loddrette aksen kalles for y- aksen eller andre aksen.

Et punkt kan bestemmes med to tall ( et tallpar ) som vi kaller koordinater. Tallpar skrives på formen (x,y). Origo har koordinatene (0, 0). Man oppgir alltid x verdien først . Punktet (1,3) har verdiene x = 1 og y = 3. Her er eksempler på noen punkter: A (1,2), B (4,0), C (-1, -2), D (-2, 0).

På denne måten kan alle ”steder” (punkter) i et plan representeres, med en x koordinat og en y koordinat. Alle kart er laget på denne måten. X – aksen er da øst - vest retning og Y – aksen er nord – sør retningen.

Funksjon

Hva er en funksjon?

La oss tenke oss en liten tunnel som det går an å kjøre en bil gjennom. Hver gang en rød bil kjører inn i tunnelen er den blå når den kommer ut. Når en svart bil kjører inn er den blå når den kommer ut. Når en grønn bil kjører inn er den blå når den kommer ut. Når en blå bil kjører inn er den blå når den kommer ut.

Hva er tunnelens funksjon?

Jo, den maler alle biler blå.

La oss tenke oss at vi har en liten boks med et hull i toppen og et i bunnen. Når vi putter et tall inn i toppen kommer et annet tall ut i bunnen. La oss gi boksen vårt et navn. La oss kalle den for Y.

Vi putter tallet 3 inn og får ut tallet 5. Vi putter tallet 1 inn og får ut tallet 3. Vi putter tallet 7 inn og får ut tallet 9. Vi putter tallet -3 inn og får ut tallet -1. Vi putter tallet -1 inn og får ut tallet 1

Hva gjør boksen? Den legger til to til det tallet som blir stappet inn i boksen. Vi kallet boksen for Y? La oss kalle tallet vi putter inn for x.

Vi kan skrive dette slik matematisk:

(1) Y = X + 2

Y = X + 2 kalles for funksjonsutrykket. Vi sier at Y er en funksjon av X. Verdien av Y avhenger av verdien av X. Detter er det vi kaller en lineær funksjon, dvs. en rett linje.

Funksjonssuttrykk

Funksjonen f(x) = 2x + 5 har funksjonsuttrykket 2x + 5. Uttrykket forteller hva som skal gjøres med tallet som skal inn i funksjonen. I dette tilfellet skal tallet multipliseres med 2 og 5 legges til.


Graf

En graf er en kurve (linje) som viser sammenhengen mellom to variable størrelser, for eksempel x og y.


Det er viktig å legge merke til at dersom kurven representerer en funksjon finnes det bare en Y verdi for hver X verdi. For en Y verdi kan det finnes flere X verdier. Dersom x er forskjellige tidspunkt på dagen og y er temperaturen, betyr det at et tidspunkt kan kun ha en temperatur, men en temperatur kan ha forekommet flere tider på dagen.


Definisjonsmengde

Hvilke verdi den variable kan ha i funksjonen bestemmes av definisjonsmengden D. Dersom funksjonens navn er f, brukes notasjonen <tex>D_f</tex>. Alternativt bruker man x [<tex>x_1</tex>. , <tex>x_2</tex> ]

Verdimengde

Hvilke verdier som kommer ut av funksjonen, funksjonsverdiene, er bestemt av definisjonsmengden og av funksjonsuttrykket, Mengden av funksjonsverdier verdiene kalles Verdimengden. Om funksjonens navn er f brukes notasjonen Vf.

Man kan se på en funksjon som en ”bro” mellom mengder, definisjonsmengden og verdimengden.

Verditabell

Måten vi tegner grafen til en funksjon på er at vi lager en verditabell, det vil si en tabell som har X og Y verdier.

Vi velger selv X verdier. Når vi har valgt en X verdi setter vi den inn for X i funksjonstrykket (1). Da får vi en Y verdi som hører til X verdien.

Disse resultatene setter vi inn i en tabell, som vist nedenfor. Ut i fra disse verdiene tegner vi grafen. I vårt eksempel kan verditabellen se slik ut:

x -1 0 1 2 y 1 2 3 4

Og grafen ser slik ut:


Når funksjonen er lineær, dvs. er en rett linje, trenger vi kun to punkter for å kunne tegne grafen. (I Funksjoner II skal vi se at ikke alle funksjoner er lineære. I slike tilfeller trenger vi flere punkter.)

La oss se litt nærmere på ligningen Y = aX + b

Det tallet som står foran X forteller hvordan linjen stiger.

Dersom a er positiv betyr det at grafen stiger mot høyre, med økende x verdi. Desto høyere a verdi, desto brattere stiger grafen.

Dersom a er negativ betyr det at Y avtar mot høyre, eller med økende X verdi.

Tallet b forteller hvor grafen krysser Y aksen. Når grafen krysser Y aksen er X verdien lik null.

Vi ser at om vi setter X lik null inn i funksjonsutrykket får vi Y = b.

Når du får litt trening kan du tegne grafen til en rett linje direkte fra funksjonsutrykket, bare ved å se på a og b, men husk at en verditabell vil alltid kunne være til hjelp.

Innledning

En funksjon forteller hvordan du skal behandle en bestemt tallverdi. Man navngir gjerne funksjonene f, g, h osv, men kan i prinsippet kalle dem hva som helst. Dersom den variable er x og funksjonens navn f skriver man f(x) som leses ”f av x”. Er t (tid) den variable skriver man f(t) som leses ”f av t”.




Grafen til en funksjon viser sammenhengen mellom verdiene i definisjonsmengden og verdiene i verdimengden.




Verditabell er en samling av punkter på grafen, altså sammhørende verdier av x og f(x). Formålet med å lage en verditabell er at du har nok punkter til å kunne tegn eller skissere grafen.

Det anbefales at du lærer deg å bruke kalkulatoren når du skal lage verditabeller.

Av og til er det imidlertid nødvendig å kunne lage tabellen manuelt. Det gjøres ved at du selv velger et antall x verdier i det området du skal tegne grafen. Du setter inn x verdiene i funksjonsuttrykket og finner sammhørende funksjonsverdier. Hvor mange verdier du velger kommer an på hvor nøyaktig du ønsker det. Flere verdier gir økt nøyaktighet.

Eksempel 1 Vi ønsker å tegne grafen til f(x) = 2x -3 i området fra -2 til 2. Vi velger x lik -2, -1, 0, 1, 2 og får:

x f(x) = 2x - 3 f(x) (x, f(x)) -2 f(x) = 2 (-2) - 3 -7 (-2, -7) -1 f(x) = 2 (-1) – 3 -5 (-1, -5) 0 f(x) = 2 (0) – 3 -3 (0, -3) 1 f(x) = 2 (1)– 3 -1 (1, -1) 2 f(x) = 2 (2) – 3 1 (2, 1)


Funksjonstyper

Lineære funksjoner

Den Rette Linje

Det at en funksjon er lineær betyr at om vi tegner grafen i et koordinat system med X verdier på førsteaksen og Y verdier på andreaksen får vi en rett linje.

Alle lineære funksjoner er av typen (2) Y = aX + b

I vårt eksempel er a = 1 og b = 2.

Vi må se litt nærmere på hvordan vi tegnet grafen.


Funksjoner av typen f(x) = ax + b kalles lineære funksjoner. Grafene til slike funksjoner er rette linjer med stigningstall a. Dersom a er negativ synker funksjonen mot høyre. f(0) = b, b er det punktet grafen skjærer y aksen (x = 0).


Figuren viser grafen til f(x) = 0,5x + 2.

En mer inngående behandling av lineære funksjoner finner du her.

Ettpunktsformelen

Dersom du kjenner et punkt på linjen og stigningstallet kan du finne funksjonsutrykket ved å bruke følgende formel:

<tex> y-y_1 = a(x-x_1)</tex>



Ligningen for en rett linje gjennom et punkt (x1,y1) med stigningstall a.


Eksempel 1:
<tex>1000 = 10\cdot 10\cdot10 = 10^3</tex> En potens består av et grunntall og en eksponent. Grunntallet i dette tilfellet er 10 og eksponenten er 3. Eksponenten forteller oss hvor mange ganger grunntallet skal ganges med seg selv.



Ved å se på figuren over kan vi vise at ligning (3) stemmer. Stigningstallet a er endring i Y verdi delt på endring i X verdi, når man beveger seg bortover grafen:

Topunktsformelen

Dersom man kjenner to punkter på en rett linje er stigningstallet a gitt som:

<tex> a =\frac{\Delta y}{\Delta x}=\frac{y_2 - y_1}{x_2 - x_1} </tex>




Om vi kombinerer ligning(6) med ligning(3) får man formelen for en rett linje, basert på at man kjenner to punkt på linjen,

topunktsformelen:

<tex> y- y_1=\frac{y_2 - y_1}{x_2 - x_1}(x-x_1) </tex>


Andregradsfunksjoner

Funksjonsuttrykket til en andregradsfunksjon er gitt som f(x) = ax2 + bx + c. Gitt på denne formen er ax2 andregradsleddet, bx er førstegradsleddet og c er konstantleddet. Grafene til andregradsfunksjoner kalles parabler. Grafene krummer og er symmetriske om symmetriaksen som er gitt som:

<tex>x = \frac{-b}{2a}</tex>

Dersom konstanten a i andregradsleddet er positiv vender grafen sin hule side oppover, den ”smiler”

Dersom konstanten er negativ vender grafen sin hule side nedover, den er ”sur”.

En andregradsfunksjon kan også være gitt på formen f(x) = a(x + b)2 + c

Konstanten a vil være den samme i begge fremstillingsmåter, men konstantene b og c er forskjellige. Hvilke fremstillingsmåte man benytter er smak og behag, men begge har sine fordeler. Grafen nedenfor viser funksjonen

I f(x) = 0,4x2 -2x +1

eventuelt

II f(x) = 0,4(x -2,5)2 -1,5


Fordelen med utrykk I er at det er på formen man bruker i ”abc” formelen, for å finne nullpunkter.

Fordelen med uttrykk II er at det gir symmetriakse og minimumspunkt direkte. Dersom man multipliserer ut parentesene og trekker sammen ender man opp med uttrykk I.

<span class="mw-default-size" typeof="mw:File"><a href="/side/Fil:Anima.PNG" class="mw-file-description"><img src="/w/images/b/be/Anima.PNG" decoding="async" width="122" height="45" class="mw-file-element" /></a></span>

Asymptotiske funksjoner

Funksjoner der x inngår som en del av nevneren kalles brøkfunksjoner eller asymptotiske funksjoner. . Funksjonene går ofte mot en grense når x går mot en bestemt verdi. Dette kalles for asymptoter.


Grafen over viser funksjonen


Funksjonen går mot uendelig når x går mot 1 ovenfra.

Funksjonen går mot minus uendelig når x går mot 1 nedenfra.

Funksjonen går mot to nedenfra når x går mot minus uendelig.

Funksjonen går mot to ovenfra når x går mot uendelig.

X = 1 er en vertikal asymptote og y = 2 er en horisontal asymptote.

Mer utfyllende stoff om asymptoter finner du her.

Polynomfunksjoner

Funksjoner som består av flere ledd. Både rettlinjede funksjoner og andregradsfunksjoner er polynomfunksjoner, men så sentrale at de behandles spesielt.


Generelt er polynomfunksjoner gitt ved. f(x) = axn + bx n-1 +……+ konstant. <tex> f(x) = a\cdot x^n + b\cdot x^{n-1}+ ...+ c</tex>



På grunnkurs befatter vi oss noe med funksjoner av 3. og 4. grad, men sjelden funksjoner av høyere grad.


Potensfunksjoner

<tex> f(x) = a\cdot x^b </tex>

der x og b er positive tall.


Dersom b = -1 har vi en asymptotisk funksjon hvis graf er en hyperbel. Dersom b = 1 får man en rett linje gjennom origo, med stigning en. Legg merke til at f(1) = a, fordi 1b er 1 uansett b - verdi.


Dersom 1>b>0 vokser funksjonen raskest for små verdier av x, for så å avta noe (avhengig av b). Dersom b > 1 vokser funksjonen raskest for store verdier av x.



Figuren viser grafene til f(x) = x 0,5 og til g(x) = x 1,5 .

Eksponentialfunksjoner

Funksjoner av typen f(x) = a ∙ bx kalles eksponentialfunksjoner (b > 0).


Funksjonene illustrerer ofte en eller annen form for vekst. I biologien finnes det populasjoner som, i perioder, vokser tilnærmet etter disse modellene.


Dersom b > 1 vokser funksjonen med økende x-verdi. Er 1 > b > 0 avtar funksjonen med økende x-verdi.


Figuren viser grafen til f(x) = 0,5x og til g(x) = 1,5x.

Kalkulatorbruk

Uansett hvilke type kalkulator man bruker, bør du på 1MX og 1MY lære deg følgende som et minimum:


Alle vanlige regneoperasjoner. Kunne legge inn et hvilket som helst funksjonsuttrykk. Kunne justere ”visningsvinduet” slik du ønsker. Kunne legge inn grenser i en verditabell og få ut de sammhørende verdier du trenger for å plotte grafen til funksjonen. Kunne finne nullpunkter, maksimumspunkt, minimumspunkt og skjæringspunkter mellom grafene til forskjellige funksjoner. Kunne løse alle typer (aktuelle) ligninger og ligningsett.

Kunne finne funksjonsuttrykket for den beste kurvetilpassningen av gitte målepunkter ved regresjon.


Dersom du skal ta 1MX eksamen bør du i tillegg kunne:


Finne funksjonens deriverte i et gitt punkt. Finne den deriverte i et hvilket som helst punkt ved hjelp av ”trace” funksjonen. Finne arealet under en graf, fra a til b. Kunne tegne grafen til funksjonen og grafen til den deriverte av funksjonen i samme vindu (på kalkulatoren). Eksempel 2:

Tegn grafene til f(x) og g(x) i et koordinatsystem.


f(x) = -0,5x2 + 2x + 1

g(x) = 1,5x - 2


Kommentar: Fra det første leddet i funksjonsuttrykket ser man at f(x) er en parabel som vender sin hule side nedover, fordi verdien fordi -0,5 er et negativt tall. …….Videre ser man at g(x) er en lineær funksjon som skjærer y aksen i -2 og har stigningstall 1,5. Lag verditabeller på kalkulator (eller manuelt) og tegn grafene.




På figuren har vi merket av punkter det er vanlig å spørre etter, fordi de har en spesiell betydning.


Nullpunkter

1) Finn nullpunktene til f. ( punkt a og b på figur)


Nullpunktene (a og b på figuren) finnes ved å sette f(x) =0 og løse andregradsligningen:



Nullpunkter (0,45 , 0) og (4,45 , 0)


Minimums eller maksimumspunkt ( bunnpunkt, toppunkt)


2) Finn topp eller bunnpunkt til f. (punkt c på figur)


Man ser fra funksjonsuttrykket at grafen har et toppunkt (negativ faktor i andregradsledd). Finn alltid symmetrilinjen: x = -b/2a = -2 /- 1 = 2.

Funksjonen har et maksimum for x = 2. For å finne tilhørende funksjonsverdi finner vi f(2) = -0,5 (22) +2 ∙ 2 + 1 = - 2 + 4 + 1 = 3

Maksimumspunkt for f er (2,3)


3) Finn punktet der f skjærer y aksen. (punkt d på figur)


En hvilket som helst graf som skjærer y aksen må gjøre det for verdien x = 0. Man setter f(0) og får: f(0) = -0,5(0)2 + 2∙0 + 1 = 1.

Grafen skjærer y aksen i punktet (0,1).


Skjæringspunkter


4) Finn skjæringspunktene mellom f og g. (punkt e og f på figur)


For at to grafer skal skjære hverandre må funksjonene være lik hverandre. Man setter f(x) = g(x) og får:


-0,5x2 + 2x + 1 = 1,5x - 2

-0,5x2 + 0,5x + 3 = 0

x = - 2 eller x = 3

Setter disse x verdier inn i en av funksjonene for å finne y koordinatene til punktene.


g(-2) = 1,5 *(-2) -2 = - 5

g(3) = 1,5*3 -2 = 2,5

Skjæringspunkter: ( -2, - 5) og ( 3 , 2,5 )


5) Finn konstantleddet til g(x). (punkt h på figur)


Konstantleddet finnes ved å finne g(0) som er -2. Dette kan man også se direkte dersom man husker at b i f(x) = ax + b er konstantleddet (der grafen krysser y aksen).


6) Finn den x-verdi som gir g(x) = 0. (punkt g på figur)


Setter g(x) = 0 som gir 1,5x -2 = 0 gir x = 1⅓