Tall: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Ny side: 2.5. Naturlige tall De naturlige tallene er: 1,2,3,4,5,6,7......... Vi kaller denne tallmengden for N. 2.6. Partall Partallene er 2,4,6,8,10,12…………. Partall er delelig på to....
 
Ingen redigeringsforklaring
Linje 1: Linje 1:
2.5. Naturlige tall  
 
== Naturlige tall ==


De naturlige tallene er: 1,2,3,4,5,6,7......... Vi kaller denne tallmengden for N.  
De naturlige tallene er: 1,2,3,4,5,6,7......... Vi kaller denne tallmengden for N.  


2.6. Partall  
 
== Partall ==


Partallene er 2,4,6,8,10,12…………. Partall er delelig på to. Partall er en del av de naturlige tallene.  
Partallene er 2,4,6,8,10,12…………. Partall er delelig på to. Partall er en del av de naturlige tallene.  


2.7. Oddetall  
 
== Oddetall ==


Oddetallene er 1,3,5,7,9,11…….. Oddetallene er ikke delelige på to. Oddetall er en del av de naturlige tallene.
Oddetallene er 1,3,5,7,9,11…….. Oddetallene er ikke delelige på to. Oddetall er en del av de naturlige tallene.
Linje 13: Linje 19:
Dersom du lurer på om et tall kan deles på et annet kan du se på delelighetskriterier.  
Dersom du lurer på om et tall kan deles på et annet kan du se på delelighetskriterier.  


2.8. Primtall  
 
== Primtall ==


Primtall er naturlige tall som kun er delelige på seg selv og en. Legg merke till at 1 ikke er et primtall.
Primtall er naturlige tall som kun er delelige på seg selv og en. Legg merke till at 1 ikke er et primtall.
Linje 23: Linje 31:
Primtall er en del av de naturlige tallene.
Primtall er en del av de naturlige tallene.


2.9. Hele tall  
 
== Hele tall ==


Dersom vi tar alle de naturlige tallene inkluderer de hele negative tallene får vi en tallmengde vi kaller for Z, som er de hele tallene.
Dersom vi tar alle de naturlige tallene inkluderer de hele negative tallene får vi en tallmengde vi kaller for Z, som er de hele tallene.
Linje 29: Linje 39:
Z : ....., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4,.......  
Z : ....., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4,.......  


2.10. Rasjonale tall  
 
== Rasjonale tall ==


En brøk er det vi kaller et rasjonalt tall. Et rasjonalt tall kan skrives som a/b. Alle rasjonale tall har enten en avsluttende desimal (teller delt på nevner har rest null etter et gitt antall desimaler), eller en periodisk desimalutvikling.  
En brøk er det vi kaller et rasjonalt tall. Et rasjonalt tall kan skrives som a/b. Alle rasjonale tall har enten en avsluttende desimal (teller delt på nevner har rest null etter et gitt antall desimaler), eller en periodisk desimalutvikling.  
Linje 41: Linje 53:
Det første eksempelet har en avsluttende desimal. Vi ser at i de to siste eksemplene gjentaes sifrene i det uendelige. I tallet 0,666666... kan vi si at perioden er 6. I tallet 0,36363636 er perioden 36. Alle desimaltall som har en periode er rasjonale tall. Vi kaller de rasjonale tallene for Q.  
Det første eksempelet har en avsluttende desimal. Vi ser at i de to siste eksemplene gjentaes sifrene i det uendelige. I tallet 0,666666... kan vi si at perioden er 6. I tallet 0,36363636 er perioden 36. Alle desimaltall som har en periode er rasjonale tall. Vi kaller de rasjonale tallene for Q.  


2.11. Reelle tall  
 
== Reelle tall ==


Det finnes enkelte tall som ikke kan skrives som brøk. Et eksempel på det er tallet π (pi). Dersom du prøver å trykke det symbolet på kalkulatoren får du 3,141592654...... Det er ingen periode her, som det er i de rasjonale tallene. Vi kaller denne type tall for et irrasjonalt tall. De rasjonale og de irrasjonale tallene danner den tallmengden som vi kaller for de reelle tallene. Vi bruker symbolet R. R inneholder alle tallene på tallinja.  
Det finnes enkelte tall som ikke kan skrives som brøk. Et eksempel på det er tallet π (pi). Dersom du prøver å trykke det symbolet på kalkulatoren får du 3,141592654...... Det er ingen periode her, som det er i de rasjonale tallene. Vi kaller denne type tall for et irrasjonalt tall. De rasjonale og de irrasjonale tallene danner den tallmengden som vi kaller for de reelle tallene. Vi bruker symbolet R. R inneholder alle tallene på tallinja.  
Linje 50: Linje 64:


[[Kategori:1T]]
[[Kategori:1T]]
[[Kategori:Logikk og mengdelære]]

Sideversjonen fra 1. apr. 2009 kl. 09:04

Naturlige tall

De naturlige tallene er: 1,2,3,4,5,6,7......... Vi kaller denne tallmengden for N.


Partall

Partallene er 2,4,6,8,10,12…………. Partall er delelig på to. Partall er en del av de naturlige tallene.


Oddetall

Oddetallene er 1,3,5,7,9,11…….. Oddetallene er ikke delelige på to. Oddetall er en del av de naturlige tallene.

Dersom du lurer på om et tall kan deles på et annet kan du se på delelighetskriterier.


Primtall

Primtall er naturlige tall som kun er delelige på seg selv og en. Legg merke till at 1 ikke er et primtall.

De minste primtallene er: 2,3,5,7,11,13,...................

Et naturlig tall som ikke er et primtall kaller vi et sammensatt tall. Sammensatte tall kan faktoriseres.

Primtall er en del av de naturlige tallene.


Hele tall

Dersom vi tar alle de naturlige tallene inkluderer de hele negative tallene får vi en tallmengde vi kaller for Z, som er de hele tallene.

Z : ....., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4,.......


Rasjonale tall

En brøk er det vi kaller et rasjonalt tall. Et rasjonalt tall kan skrives som a/b. Alle rasjonale tall har enten en avsluttende desimal (teller delt på nevner har rest null etter et gitt antall desimaler), eller en periodisk desimalutvikling.

1/5 kan skrives som 0,2

2/3 kan skrives som 0,666666666666...........

4/11 kan skrives som 0,363636363636363636........

Det første eksempelet har en avsluttende desimal. Vi ser at i de to siste eksemplene gjentaes sifrene i det uendelige. I tallet 0,666666... kan vi si at perioden er 6. I tallet 0,36363636 er perioden 36. Alle desimaltall som har en periode er rasjonale tall. Vi kaller de rasjonale tallene for Q.


Reelle tall

Det finnes enkelte tall som ikke kan skrives som brøk. Et eksempel på det er tallet π (pi). Dersom du prøver å trykke det symbolet på kalkulatoren får du 3,141592654...... Det er ingen periode her, som det er i de rasjonale tallene. Vi kaller denne type tall for et irrasjonalt tall. De rasjonale og de irrasjonale tallene danner den tallmengden som vi kaller for de reelle tallene. Vi bruker symbolet R. R inneholder alle tallene på tallinja.


Figur 1.2: Figuren viser tallmengdene på tallinja. Legg merke til at N er en delmengde av Z og Z er igjen en delmengde av Q osv.