Binominalformelen: Forskjell mellom sideversjoner
Fra Matematikk.net
Ingen redigeringsforklaring |
Ingen redigeringsforklaring |
||
Linje 8: | Linje 8: | ||
<tex> (x + y)^n= \left ({n}\\{0} \right) x^ny^0 + \left ({n}\\{1} \right) x^{n-1}y^1 + \left ({n}\\{2} \right) x^{n-2}y^2 + ....... + | <tex> (x + y)^n= \left ({n}\\{0} \right) x^ny^0 + \left ({n}\\{1} \right) x^{n-1}y^1 + \left ({n}\\{2} \right) x^{n-2}y^2 + ....... + | ||
\left ({n}\\{n} \right) x^{0}y^n = \sum_{ | \left ({n}\\{n} \right) x^{0}y^n = \sum_{k=0}^n \left ({n}\\{n} \right)x^{n-k}y^k</tex> | ||
x og y er variabler og n et naturlig tall: | x og y er variabler og n et naturlig tall: |
Sideversjonen fra 5. jul. 2011 kl. 15:55
At første kvadratsetning kan formuleres som
<tex>(x + y)^2 = x^2 + 2xy + y^2</tex>
er greit.
Hva med <tex>(x + y)^{22}</tex>....? For å regne ut uttrykk av typen <tex>(x + y)^n</tex> for store n verdier har vi følgende formel til hjelp.
<tex> (x + y)^n= \left ({n}\\{0} \right) x^ny^0 + \left ({n}\\{1} \right) x^{n-1}y^1 + \left ({n}\\{2} \right) x^{n-2}y^2 + ....... + \left ({n}\\{n} \right) x^{0}y^n = \sum_{k=0}^n \left ({n}\\{n} \right)x^{n-k}y^k</tex>
x og y er variabler og n et naturlig tall: