1T 2024 høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 107: Linje 107:


===Oppgave 5===
===Oppgave 5===
[[File: 24112024-01.png|300px]]


===Oppgave 6===
===Oppgave 6===

Sideversjonen fra 24. nov. 2024 kl. 13:16

Oppgaven som pdf

Diskusjon av oppgaven på matteprat


DEL EN

Oppgave 1

$u = 30 ^\circ$


$2 \cdot \sin(u) \cdot \cos(u) = 2 \cdot \frac 12 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$

2u blir 60 grader og fra figuren ser vi at $\sin(2u) = \sin (60^\circ) = \frac{\sqrt{3}}{2}$ så formelen stemmer.

Oppgave 2

Vi ser at dette er en andregradsfunksjon med nullpunkter for x= -3 og x = 1. Vi har symmetri så funksjonen vil ha sin laveste verdi når x = -1.

$f(-1) = (-1-1)(-1+3) = -2 \cdot 2 = -4$


Bunnpunkt (-1, 4)

Oppgave 3

Vi utfører en polynom divisjon for å faktorisere uttrykket.

Vi observerer at f(1) = 0, da er f delelig med (x-1).

$( x^3+7x^2+4x-12):(x-1) = x^2 + 8x +12 $

$-(x^3 - x^2)$

$\quad \quad \quad 8x^2+ 4x- 12$

$\quad \quad -( 8x^2 - 8x) $

$ \quad \quad \quad \quad \quad \quad 12x - 12 $

$ \quad \quad \quad \quad \quad \quad -(12x - 12) $

$ \quad \quad \quad \quad \quad \quad 0 $

Så faktoriserer vi andregradsuttrykket:

Bruker ABC formelen og finner at $ x_1 = -6 \vee x_2 = -2$

Da har vi at $x^3 + 7x^2 + 4x - 12 = (x-1)(x+2)(x+6)$

Så lager vi et fortegnsskjema for å finne ut for hvilke verdier f(x) er negativ, null og positiv:

Da har vi et fortegnsskjema som viser når f er positiv og negativ. Dette stemmer med grafen nedenfor.

Da gjennstår det bare å se på $f(x) < 0 :$

f skal være mindre enn null. Det er den i området fra minus uendelig til -6 og mellom -2 og 1.

$x \in <\leftarrow, -6> \cup <-2, 1>$

Oppgave 4

a)

Tangens er sinus delt på cosinus. Tangens til 50 grader er større enn en fordi $\frac{0,77}{0,64}$ er større enn 1.


b)

Vinkelen befinner seg i andre kvadrant der cosinus er negativ og sinus positiv. Da er tangens negativ, altså mindre enn null.

Oppgave 5


Arealet av det store kvadratet:

$(t + s)(t + s) = t^2 + 2ts + s^2$

Dette er en matematisk identitet, 1. kvadratsetning. Det andre leddet på høyre side, 2ts er arealet av de to rektangelene i fuguren, som begge har areal t ganger s.

DEL TO

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

a)

b)

Oppgave 5

Oppgave 6

Oppgave 7