1T 2024 vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 12: Linje 12:
Tangens til vinkelen er definert som motstående katet, delt på hosliggende katet.
Tangens til vinkelen er definert som motstående katet, delt på hosliggende katet.


$\tan(u) \cdot \tan(v) = \frac{6}{8} * \frac{8}{6} = 1$
$\tan(u) \cdot \tan(v) = \frac{6}{8} \cdot \frac{8}{6} = 1$





Sideversjonen fra 5. jul. 2024 kl. 06:14

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsning laget av Sindre Sogge Heggen

Del 1

Oppgave 1

a)

Tangens til vinkelen er definert som motstående katet, delt på hosliggende katet.

$\tan(u) \cdot \tan(v) = \frac{6}{8} \cdot \frac{8}{6} = 1$


Dette betyr at Tom sin påstand er riktig.

b)

I denne oppgaven skal vi avgjøre om påstanden stemmer for alle rettvinklete trekanter.

Oppgave 2

Guri kan ha utført polynomdivisjon på to måter for å vise at faktoriseringen er riktig. Her er de to mulige polynomdivisjonene:


Divisjon av det opprinnelige polynomet med en av faktorene: Vi kan dele det opprinnelige polynomet

$2x^3+3x^2−11x−6$

med en av faktorene, for eksempel

$x−2$

Hvis vi får den andre faktoren som kvotient, bekrefter det at faktoriseringen er riktig.


Divisjon av det opprinnelige polynomet med kvotienten:

Vi kan også dele det opprinnelige polynomet

$2x^3+3x^2−11x−6$

med kvotienten

$2x^2+7x+3$

Hvis vi får

$x−2$

som resultat, bekrefter det også at faktoriseringen er riktig.