S1 2023 Høst LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Lainz (diskusjon | bidrag)
mIngen redigeringsforklaring
Quiz (diskusjon | bidrag)
Linje 11: Linje 11:
[https://youtu.be/INZisk-GO30 Videoløsning del 1 av Lektor Lainz (Reabel)]
[https://youtu.be/INZisk-GO30 Videoløsning del 1 av Lektor Lainz (Reabel)]


==REA 3060 - S1- høst 23==
==DEL 1==
 
===DEL 1===
 
 
===Oppgave 1===


==Oppgave 1==


$ {(\frac{3a^2}{2b^3})}^2 \cdot {( \frac{a^2b^{-5}}{4})}^{-1} = \frac{9 a^4 \cdot 4}{4b^6 \cdot a^2 \cdot b^{-5}} = \frac{9a^2}{b}$
$ {(\frac{3a^2}{2b^3})}^2 \cdot {( \frac{a^2b^{-5}}{4})}^{-1} = \frac{9 a^4 \cdot 4}{4b^6 \cdot a^2 \cdot b^{-5}} = \frac{9a^2}{b}$


===Oppgave 2===
==Oppgave 2==
 


$2 \ln e^3 = 2\cdot 3 \ln e =6$
$2 \ln e^3 = 2\cdot 3 \ln e =6$


3 lg(70)  Vi vet at lg 70 er mellom 1 og 2 fordi lg 10 = 1 og lg100= 2, så uttrykket er mellom 3 og 6. Vi kan omforme:
3 lg(70)  Vi vet at lg 70 er mellom 1 og 2 fordi lg 10 = 1 og lg100= 2, så uttrykket er mellom 3 og 6. Vi kan omforme:


$3lg(70) = 3 lg(10 \cdot 7) = 3 (lg10 + lg 7)= 3 + 3lg 7$
$3lg(70) = 3 lg(10 \cdot 7) = 3 (lg10 + lg 7)= 3 + 3lg 7$


$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$
$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$
Linje 38: Linje 31:
$3 \lg(70), \quad 2 \ln e^3, \quad e^{3 \ln 2}$
$3 \lg(70), \quad 2 \ln e^3, \quad e^{3 \ln 2}$


===Oppgave 3===
==Oppgave 3==


====a)====
====a)====
Linje 52: Linje 45:
P(Kun to terninger viser det samme antall øyner) = $1 - P(alle \quad like) - P (alle \quad forskjellige) = 1- \frac{1}{36} - \frac{20}{36} = \frac {15}{36}  = \frac {5}{12}$
P(Kun to terninger viser det samme antall øyner) = $1 - P(alle \quad like) - P (alle \quad forskjellige) = 1- \frac{1}{36} - \frac{20}{36} = \frac {15}{36}  = \frac {5}{12}$


===Oppgave 4===
==Oppgave 4==
 


<math>f(x)= \bigg{\lbrace} \begin{array}{cc}
<math>f(x)= \bigg{\lbrace} \begin{array}{cc}
Linje 67: Linje 59:
For at funksjonen skal være kontinuerlig må funksjonsverdien bli null når x går mot en nedenfra. Dvs. $a = \pm 2$
For at funksjonen skal være kontinuerlig må funksjonsverdien bli null når x går mot en nedenfra. Dvs. $a = \pm 2$


===Oppgave 5===
==Oppgave 5==
 
=DEL 2=
 
==Oppgave 1==
 
==Oppgave 2==
 
==Oppgave 3==
 
==Oppgave 4==
 
==Oppgave 5==
 
==Oppgave 6==

Sideversjonen fra 9. jul. 2024 kl. 12:37

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løysingsforslag laga av Torodd F. Ottestad

Løsningsforslag laget av Realfagsportalen

Løsningsforslag laget av Farhan Omar

Videoløsning del 1 av Lektor Lainz (Reabel)

DEL 1

Oppgave 1

$ {(\frac{3a^2}{2b^3})}^2 \cdot {( \frac{a^2b^{-5}}{4})}^{-1} = \frac{9 a^4 \cdot 4}{4b^6 \cdot a^2 \cdot b^{-5}} = \frac{9a^2}{b}$

Oppgave 2

$2 \ln e^3 = 2\cdot 3 \ln e =6$

3 lg(70) Vi vet at lg 70 er mellom 1 og 2 fordi lg 10 = 1 og lg100= 2, så uttrykket er mellom 3 og 6. Vi kan omforme:

$3lg(70) = 3 lg(10 \cdot 7) = 3 (lg10 + lg 7)= 3 + 3lg 7$

$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$

I stigende rekkefølge:

$3 \lg(70), \quad 2 \ln e^3, \quad e^{3 \ln 2}$

Oppgave 3

a)

P( alle terningen viser forskjellige øyner) = $\frac 66 \cdot \frac 56 \cdot \frac 46 = \frac 59$

b)

Nøyaktig to terninger viser like øyner er alle muligheter minus alle forskjellige (fra a) og alle tre like.

Finner først sannsynligheten for at alle terningene viser like øyner: P( alle like øyner) = $\frac 66 \cdot \frac 16 \cdot \frac 16 = \frac {1}{36}$

P(Kun to terninger viser det samme antall øyner) = $1 - P(alle \quad like) - P (alle \quad forskjellige) = 1- \frac{1}{36} - \frac{20}{36} = \frac {15}{36} = \frac {5}{12}$

Oppgave 4

<math>f(x)= \bigg{\lbrace} \begin{array}{cc} x^2+ 3x - a^2 & x < 1 \\ x-1 & \geq 1 \\ \end{array} </math>

$f(1)= 1-1 = 0$

$\lim\limits_{x \to 1^-} f(x) = \lim\limits_{ x \to 1^-} (x^2 + 3x - a^2) = 4-a^2$

For at funksjonen skal være kontinuerlig må funksjonsverdien bli null når x går mot en nedenfra. Dvs. $a = \pm 2$

Oppgave 5

DEL 2

Oppgave 1

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6