R1 2023 Høst LØSNING: Forskjell mellom sideversjoner
Linje 83: | Linje 83: | ||
$\lim\limits_{ x \to k^+} (x^2 + (2-k)x = f(k) = 2k$ | $\lim\limits_{ x \to k^+} (x^2 + (2-k)x) = f(k) = 2k$ | ||
$$ | $\lim\limits_{ x \to k^-} (-x^2 + (2+k)x) = f(k) = 2k$ | ||
====b)==== | ====b)==== |
Sideversjonen fra 26. nov. 2023 kl. 15:16
Diskusjon av oppgaven på Matteprat
REA 3056
Del 1
Oppgave 1
$f(x) = x^2 \cdot ln(x)$
$f'(x) = 2x \cdot ln(x) + x^2 \cdot \frac1x = x(ln(x)+1)$
Oppgave 2
$2 \ln e^3 = 2\cdot 3 \ln e =6$
3 lg(70) Vi vet at lg 70 er mellom 1 og 2 fordi lg 10 = 1 og lg100= 2, så uttrykket er mellom 3 og 6. Vi kan omforme:
$3lg(70) = 3 lg(10 \cdot 7) = 3 (lg10 + lg 7)= 3 + 3lg 7$
$e^{3\ln2} = e^{{\ln2}^3} = 2^3 = 8$
I stigende rekkefølge:
$3 \lg(70), \quad 2 \ln e^3, \quad e^{3 \ln 2}$
Oppgave 3
a)
$\overrightarrow{AB} = [2-(-3), -2-(-1)]= [5,-1]\quad $ lengde $\sqrt{26}$
$\overrightarrow{BC}= [5-2, 2-(-2)] = [3, 4] \quad$ lengde $\sqrt{9+16} = 5$
$\overrightarrow {CA} = [-3-5), -1-2] = [-8, -3] \quad$ lengde $\sqrt {73}$
Sidekanten BC er kortest.
b)
Dersom skalarproduktet mellom vektorene er null, er vinkelen mellom dem 90 grader.
$\overrightarrow{AB} \cdot \overrightarrow{BC} = [5,-1] \cdot [3,4] = 15- 4 = 11$
$\overrightarrow{BC} \cdot \overrightarrow{CA} = [3,4] \cdot [-8,-3] = -24-12 = -36$
$\overrightarrow{CA} \cdot \overrightarrow{AB} = [-8, -3] \cdot [5, -1] = -40+ 3 = -37$
Ingen av vinklene i trekanten er 90 grader.
Oppgave 4
a)
b)
Del to
Oppgave 1
a)
b)
c)
Oppgave 2
a)
$f(k) = k^2+(2-k)k = 2k$
$\lim\limits_{ x \to k^+} (x^2 + (2-k)x) = f(k) = 2k$
$\lim\limits_{ x \to k^-} (-x^2 + (2+k)x) = f(k) = 2k$