S1 2022 Vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 103: Linje 103:
=DEL 2=
=DEL 2=


[[File:  S1-V22-del2-1.png]]
==Oppgave 1==
 
[[File:  S1-V22-del2-1.png|800px]]
 
===a)===
 
Velger å la x-verdiene være antall år etter 1960, og bruker regresjonsanalyse i Geogebra.


==Oppgave 1==
Velger en eksponentiell modell, da denne passer godt til dataene vi har. I tillegg er det usannsynlig at antall gårdsbruk i Norge blir null, så en eksponentiell modell hvor antall gårdsbruk fortsetter å avta uten å bli null, passer godt.
 
Modellen er $g(x)=207814\cdot 0,972^x$
 
===b)===
 
Skriver x=100 i Geogebra (tilsvarer 100 år etter 1960, altså 2060) og finner skjæringspunktet mellom x=100 og grafen til g. Se punkt A=(100,12061). Ifølge modellen min vil det være 12061 gårdsbruk i Norge i 2060.
 
===c)===
 
Bruker CAS i Geogebra og løser likningen $g'(x)=-1000$. CAS regner ut at $x=62,4$. Det vil si at ifølge modellen min, vil antall gårdsbruk i Norge avta med ca. 1000, ca. 62 år etter 1960, altså i år 2022.
 
==Oppgave 2==

Sideversjonen fra 28. des. 2022 kl. 14:20

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Løsningsforslag laget av Farhan Omar

DEL 1

Oppgave 1

$(2a)^{-1}\cdot (\frac{b}{2})^{-3}\cdot(a\cdot b)^3$

$=2^{-1}\cdot a^{-1}\cdot b^{-3}\cdot 2^3\cdot a^3 \cdot b^3$

$=2^{-1+3}\cdot a^{-1+3} \cdot b^{-3+3}$

$=2^2\cdot a^2 \cdot b^0$

$=4a^2$

Oppgave 2

$E(x)=0,2x+40+\frac{20\,000}{x}$

$E'(x)=0,2-\frac{20\,000}{x^2}$

$E'(100)=0,2-\frac{20\,000}{100^2} = 0,2-\frac{20\,000}{10\,000} = 0,2-2 =-1,8$

$E'(100)$ forteller oss at en dag det produseres 100 luer, ville produksjonskostnaden synke med 1,8 kroner per lue, dersom fabrikken skulle øke produksjonen med 1 lue.

Oppgave 3

$\lim\limits_{x \to 3} \frac{x-3}{x^2+x-12}$

$=\lim\limits_{x \to 3} \frac{x-3}{(x-3)(x+4)}$

$=\lim\limits_{x \to 3} \frac{1}{x+4}$

$=\frac{1}{7}$

Oppgave 4

$e^{2x}-e^x=2$

$(e^x)^2-e^x-2=0$

Setter $u=e^x$

$u^2-u-2=0$

$(u+1)(u-2)=0$

$u=-1 \vee u=2$

$e^x=-1 \vee e^x=2$

Forkaster det negative svaret fordi ln(-1) ikke er definert.

$ln(e^x)=ln(2)$

$x=ln(2)$

Oppgave 5

$lg(x+3)+lg\,x=lg\,a$

Setter inn x=7.

$lg(7+3)+lg\,7=lg\,a$

$lg\,10 + lg\,7=lg\,a$

$lg(10\cdot7)=lg\,a$

$lg\,70 = lg\,a$

$a=70$

Oppgave 6

a)

Eleven ønsker å finne ut hvor stor andel av en million kast med to terninger, som ender med at summen av de to terningene er 9 (i samme kast).

Linje 1: importerer "randint"-funksjonen fra "random"-biblioteket Linje 4: setter variabelen N til en million Linje 5: setter variabelen "gunstige" til null

Line 7: dette er en for-løkke, som går N ganger, altså en million ganger i dette tilfellet.

Linje 8-9 (inni for-løkka): to tilfeldige tall, a og b, genereres med "randint"-funksjonen. Tallene a og b er mellom 1 og 6 (tilsvarende 2 terninger).

Linje 10-11 (inni for-løkka): en if-setning sier at dersom summen av tallene a og b er lik 9, økes variabelen "gunstige" med 1.

Linje 13: her skrives andelen gunstige utfall ut, altså antall ganger summen av "terningene" ble 9, delt på antall forsøk (en million terningkast med to terninger).

b)

Sum 9 på to terninger er mulig å oppnå på 4 måter: 6+3, 5+4, 4+5, 3+6. Totalt er det 6*6=36 mulige utfall ved kast av to terninger.

Vi har at $P(sum\,9) = \frac{4}{36}=\frac{1}{9}$

DEL 2

Oppgave 1

a)

Velger å la x-verdiene være antall år etter 1960, og bruker regresjonsanalyse i Geogebra.

Velger en eksponentiell modell, da denne passer godt til dataene vi har. I tillegg er det usannsynlig at antall gårdsbruk i Norge blir null, så en eksponentiell modell hvor antall gårdsbruk fortsetter å avta uten å bli null, passer godt.

Modellen er $g(x)=207814\cdot 0,972^x$

b)

Skriver x=100 i Geogebra (tilsvarer 100 år etter 1960, altså 2060) og finner skjæringspunktet mellom x=100 og grafen til g. Se punkt A=(100,12061). Ifølge modellen min vil det være 12061 gårdsbruk i Norge i 2060.

c)

Bruker CAS i Geogebra og løser likningen $g'(x)=-1000$. CAS regner ut at $x=62,4$. Det vil si at ifølge modellen min, vil antall gårdsbruk i Norge avta med ca. 1000, ca. 62 år etter 1960, altså i år 2022.

Oppgave 2