1P 2021 vår LK20 LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Quiz (diskusjon | bidrag)
Quiz (diskusjon | bidrag)
Linje 113: Linje 113:


==Oppgave 11==
==Oppgave 11==
===a)===
<b>Det er graf 2 som er grafen til $R$. </b> I starten er det få som vet om ryktet, og spredningen går litt sakte til å begynne med. Etter hvert som flere blir kjent med ryktet, øker spredningen av ryktet raskere. Ryktet sprer seg raskest når halvparten av øyboerne vet om det. På slutten kjenner de fleste til ryktet, og ryktet sprer seg derfor saktere til alle kjenner til ryktet. Når alle kjenner ryktet, flater grafen ut.
===b)===


=Oppgavetype 3=
=Oppgavetype 3=

Sideversjonen fra 22. jun. 2021 kl. 14:51

Eksamen 1P vår 2021 LK20 Fagfornyelsen

Oppgaven som pdf

Diskusjon av oppgaven på matteprat

Oppgavetype 1

I oppgavetype 1 skal du bare oppgi svaret, uten begrunnelse. Vi gir allikevel en liten begrunnelse her, for å forstå hvordan vi har kommet frem til svaret.

Oppgave 1

Svar: 100 kroner.

Begrunnelse: Her er det mange måter å tenke på, men for eksempel: 22 kroner for 220 mL cappuccino gir 10 kroner for 100 mL cappuccino. I 1 liter er det 1000 mL. Hvis 100 mL cappuccino koster 10 kroner, vil da 1 liter (1000 mL) koste 100 kroner.

Oppgave 2

Svar: 11610 kroner

Begrunnelse: regner ut $25000\cdot 0,88^6$ på kalkulator eller CAS. 25000 kr er startverdien, 0,88 er vekstfaktoren ved 12% nedgang, og 6 er antall år.

Oppgave 3

Svar: 0,25

Begrunnelse: bruker CAS, og fyller inn verdien på de variablene jeg får opplyst i teksten. Jeg kaller $\mu$ for x, og bruker "løs" i CAS. Husk å skrive inn svaret som desimaltall, og ikke som brøk.

Oppgave 4

Svar: Midtre Gauldal

Begrunnelse: i denne oppgaven må du se nøye på verdiene på y-aksen. Det er fristende å svare Strand, hvor det ser ut som en stor økning, men da har man ikke sett ordentlig på y-aksen. I Strand øker aldri antall felte elger med mer enn 3 på ett år. I Skaum øker aldri antallet felte elger med mer enn ca. 25 elg per år. I Stjørdal øker ikke antallet med mer enn ca. 50 elg per år. I Midtre Gauldal har vi en økning på ca. 90 felte elg fra 2015 til 2016, dette er den største økningen.

Oppgave 5

Svar: 280 km

Begrunnelse: I Firma A er prisen 1200 kr uansett hvor langt Ester kjører. I Firma B er startprisen 500 kr, så øker deretter prisen med 200 kr for 80 km (du ser det f.eks. fra 40 km til 120 km, da har prisen gått fra 600 kr til 800 kr). Bildet stopper på 200 km og 1000 kr for Firma B. For at prisen skal bli lik Firma A, 1200 kr, må Ester kjøret 280 km med Firma B.

Oppgave 6

Svar: 250 kroner

Begrunnelse: prisen for å leie seilbåten alene er $5\cdot 700\,kr = 3500\,kr$. Prisen per person når 14 personer deler på prisen er $\frac{3500\,kr}{14}=250\,kr$

Oppgave 7

Svar: 79 %

Begrunnelse: Vi skal ha prosentandelen som bruker nettet til skolearbeid/lekser minst én gang hver uke, så du må legge sammen prosentandelen som bruker nettet til skolearbeid/lekser hver dag og hver uke. 35 % + 44 % = 79 %.

Oppgave 8

Svar: 1400 døgn

Begrunnelse: deler strekning på fart, for å finne tid. $\frac{1,4\cdot 10^9\,km}{1,0\cdot 10^6 \,km/døgn}=1400\,døgn$

Oppgavetype 2

I oppgavetype 2 skal du vise utregninger, forklare fremgangsmåter du har brukt, og begrunne resultater.

Oppgave 9

a)

Lager et linjediagram i Excel. Ha med nødvendige aksetitler, tittel på diagrammet og forklaringstekst til linjene.

b)

Bruker Excel til å beregne størst prosentvis forskjell mellom gjennomsnittlig vindstyrke og kraftigste vindkast i disse timene, og finner at den største forskjellen er i tidsperioden kl. 10-11.

Skjermbilde fra Excel:

Med formler:

c)

Bruker Excel til å beregne gjennomsnittet av vindstyrken i perioden kl.02 til 15 den 4. oktober.

Med formel:

Gjennomsnittlig vindstyrke var 15,05 m/s fra kl.02 til kl.15 den 4. oktober. Gjennomsnittlig vindstyrke for hele døgnet var 11,7 m/s. Det vil si at det i gjennomsnitt var lavere vindstyrke resten av døgnet, enn mellom kl. 02 og kl. 15.

Oppgave 10

a)

Bruker regresjonsanalyse i Geogebra. Velger eksponentiell modell.

Modellen som viser temperaturen i geléen x minutter etter at den ble satt til avkjøling er $T(x)=92,5 \cdot 0,99^x$

b)

Geléen ble satt til avkjøling i et rom der temperaturen var 20 grader Celsius. Det vil si at geléen ikke vil bli kaldere enn romtemperaturen, 20 grader. Jeg kopierer modellen til grafikkfeltet i Geogebra, og tegner linja y=20, og finner skjæringspunktet med grafen til T. Se punkt A=(155.7 , 20). Etter omtrent 155 minutter, har geléen en temperatur på 20 grader.

Gyldighetsområdet til modellen er fra 0 til 155 minutter, altså for $x \in [0,155]$.

Oppgave 11

a)

Det er graf 2 som er grafen til $R$. I starten er det få som vet om ryktet, og spredningen går litt sakte til å begynne med. Etter hvert som flere blir kjent med ryktet, øker spredningen av ryktet raskere. Ryktet sprer seg raskest når halvparten av øyboerne vet om det. På slutten kjenner de fleste til ryktet, og ryktet sprer seg derfor saktere til alle kjenner til ryktet. Når alle kjenner ryktet, flater grafen ut.

b)

Oppgavetype 3