2P 2020 høst LØSNING: Forskjell mellom sideversjoner
Linje 74: | Linje 74: | ||
| $100$ | | $100$ | ||
| $17150$ | | $17150$ | ||
| | |} | ||
Gjennomsnitt: $\frac{17150}{100}=171,5\,cm$ | Gjennomsnitt: $\frac{17150}{100}=171,5\,cm$ |
Sideversjonen fra 29. nov. 2020 kl. 17:26
Diskusjon av oppgaven på matteprat
Mer diskusjon av oppgaven på matteprat
Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas
DEL 1
Oppgave 1
a)
Rangerer tallene i stigende rekkefølge:
$7\quad10\quad10\quad12\quad12\quad18\quad20\quad20\quad33\quad38$
Medianen er gjennomsnittet av de to midterste tallene: $\frac{12+18}{2}=\frac{30}{2}=15$
Gjennomsnitt: $\frac{7+10+10+12+12+18+20+20+33+38}{10}=\frac{180}{10}=18$
Medianen er 15 og gjennomsnittet er 18 for antall bilder som passerte i løpet av en periode med grønt lys.
b)
Hvis vi ser på den sorterte listen i a), ser vi at 18 er det sjette tallet. Det betyr at den kumulative frekvensen for 18 passerte biler er 6. Det forteller oss at det passerte 18 eller færre biler i løpet av en periode med grønt lys i 6 av observasjonene.
c)
Dersom tiden med grønt lys var kortet ned med 10 %, antar jeg at medianen og gjennomsnittet også ville synke med 10 %.
Ny median: $15-\frac{10\cdot 15}{100} = 15-1,5 = 13,5$ passerte biler i løpet av en periode med grønt lys.
Nytt gjennomsnitt: $18-\frac{10\cdot 18}{100}=18-1,8=16,2$ passerte biler i løpet av en periode med grønt lys.
Oppgave 2
$\frac{5\cdot 10^{12}+3,1\cdot 10^{13}}{1,8\cdot 10^7} = \frac{0,5\cdot 10^{13}+3,1\cdot 10^{13}}{1,8\cdot 10^7} = \frac{(0,5+ 3,1)\cdot 10^{13}}{1,8\cdot 10^7} = \frac{3,6\cdot 10^{13}}{1,8\cdot 10^7} = 2\cdot 10^{13-7} = 2\cdot 10^6 $
Oppgave 3
a)
Høyde i cm | Klassemidtpunkt, $x_m$ | Frekvens, $f$ | $f\cdot x_m$ |
$[150,160\rangle$ | $155$ | $10$ | $1550$ |
$[160,170\rangle$ | $165$ | $30$ | $4950$ |
$[170,180\rangle$10 | $175$ | $50$ | $8750$ |
$[180,200\rangle$ | $190$ | $10$ | $1900$ |
Sum | $100$ | $17150$ |
Gjennomsnitt: $\frac{17150}{100}=171,5\,cm$
Gjennomsnittshøyden til elevene ved skolen er 171,5 cm.