R2 2020 vår LØSNING: Forskjell mellom sideversjoner
Linje 43: | Linje 43: | ||
===c)=== | ===c)=== | ||
Bruker delvis integrasjon, der $u = ln\,x \Rightarrow u'=\frac{1}{x}$ og $v' = x \Rightarrow v=\frac{1}{2}x^2$ | |||
Finner det ubestemte integralet: | |||
$\int x \cdot ln\,x\,dx = \frac{1}{2}x^2 \cdot ln\,x- \int \frac{1}{x} \cdot \frac{1}{2}x^2 dx = \frac{1}{2}x^2 \cdot ln\,x -\frac{1}{2}\int x\, dx = \frac{1}{2}x^2 \cdot ln\,x -\frac{1}{4} x^2 + C$ | |||
Finner det bestemte integralet: | |||
$\int_{1}^{e} x \cdot ln\,x\,dx = [\frac{1}{2}x^2 \cdot ln\,x -\frac{1}{4} x^2]_{1}^{e} = (\frac{1}{2}e^2 \cdot ln\,e -\frac{1}{4} e^2) - (\frac{1}{2}\cdot 1^2 \cdot ln\,1 -\frac{1}{4} \cdot 1^2) \\ = (\frac{2}{4}e^2 \cdot 1 - \frac{1}{4}e^2)-(\frac{1}{2} \cdot 0 - \frac{1}{4}) = \frac{1}{4}e^2+\frac{1}{4} $ | |||
==Oppgave 3== |
Sideversjonen fra 2. jul. 2020 kl. 17:45
Diskusjon av denne oppgaven på matteprat
Løsning del 1 av Kristian Saug
Løsning del 2 av Kristian Saug
Løsning del 1 og del 2 av Lektor Trandal
Løsningsforslag laget av Marius Nilsen ved Bergen Private Gymnas
DEL 1
Oppgave 1
a)
$f(x)=x\cdot sin x$
$f'(x)=sin x + x \cdot cos x$
b)
$g(x)=\frac{cos(x^2)}{x}$
$g'(x)=\frac{-2x\cdot sin(x^2)\cdot x - cos(x^2)\cdot 1}{x^2} = \frac{-2x^2 \cdot sin(x^2) - cos(x^2)}{x^2}$
Oppgave 2
a)
$\int(x^2+3+e^{2x})dx = \frac{1}{3}x^3+3x+\frac{1}{2}e^{2x}+C$
b)
$u=x^2$
$\frac{du}{dx}=2x \Rightarrow dx=\frac{du}{2x}$
$ \int 6x\cdot sin(x^2)dx = 3 \int 2x \cdot sin (u) \frac{du}{2x} = 3 \int sin(u) du = -3cos(u) + C = -3 cos(x^2)+C $
c)
Bruker delvis integrasjon, der $u = ln\,x \Rightarrow u'=\frac{1}{x}$ og $v' = x \Rightarrow v=\frac{1}{2}x^2$
Finner det ubestemte integralet:
$\int x \cdot ln\,x\,dx = \frac{1}{2}x^2 \cdot ln\,x- \int \frac{1}{x} \cdot \frac{1}{2}x^2 dx = \frac{1}{2}x^2 \cdot ln\,x -\frac{1}{2}\int x\, dx = \frac{1}{2}x^2 \cdot ln\,x -\frac{1}{4} x^2 + C$
Finner det bestemte integralet:
$\int_{1}^{e} x \cdot ln\,x\,dx = [\frac{1}{2}x^2 \cdot ln\,x -\frac{1}{4} x^2]_{1}^{e} = (\frac{1}{2}e^2 \cdot ln\,e -\frac{1}{4} e^2) - (\frac{1}{2}\cdot 1^2 \cdot ln\,1 -\frac{1}{4} \cdot 1^2) \\ = (\frac{2}{4}e^2 \cdot 1 - \frac{1}{4}e^2)-(\frac{1}{2} \cdot 0 - \frac{1}{4}) = \frac{1}{4}e^2+\frac{1}{4} $