R1 2020 vår LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 28: | Linje 28: | ||
==Oppgave 2== | ==Oppgave 2== | ||
===a)=== | |||
$ln(x^2) + ln(x) = 12 \\ 2 ln(x) + ln(x) = 12 \\ 3 ln(x) = 12 \\ ln(x) = 4 \\ x = e^4$ | |||
===b)=== | |||
==Oppgave 3== | ==Oppgave 3== |
Sideversjonen fra 9. jun. 2020 kl. 03:38
Diskusjon av denne oppgaven på matteprat
Løsningsforslag til del 1 av Kristian Saug
Løsningsforslag del 2 av Kristian Saug
Løsningsforslag av Svein Arneson
DEL EN
Oppgave 1
a)
$f(x)=x^6 + 3x^5 + ln(x) \\ f'(x)= 6x^5+15x^4 + \frac{1}{x}$
b)
$g(x)=2x^2 \cdot e^{2x-1}\\ g'(x) = 4x \cdot e^{2x-1} + 2x^2 \cdot 2 \cdot e^{2x-1} = (1+x)4x \cdot e^{2x-1}$
c)
$h(x) = \frac{4x-1}{x+2} \\ h'(x) = \frac{4(x+2) - (4x-1)}{(x+2)^2} = \frac{9}{(x+2)^2}$
Oppgave 2
a)
$ln(x^2) + ln(x) = 12 \\ 2 ln(x) + ln(x) = 12 \\ 3 ln(x) = 12 \\ ln(x) = 4 \\ x = e^4$