R1 2020 vår LØSNING: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 21: Linje 21:
===b)===
===b)===


$g(x)=2x^2 \cdot e^{2x-1}\\ f'(x) = 4x \cdot e^{2x-1} + 2x^2 \cdot 2 \cdot e^{2x-1} = (1+x)4x \cdot e^{2x-1}$
$g(x)=2x^2 \cdot e^{2x-1}\\ g'(x) = 4x \cdot e^{2x-1} + 2x^2 \cdot 2 \cdot e^{2x-1} = (1+x)4x \cdot e^{2x-1}$


===c)===
===c)===

Sideversjonen fra 9. jun. 2020 kl. 03:30

oppgave

Diskusjon av denne oppgaven på matteprat

Løsningsforslag til del 1 av Kristian Saug

Løsningsforslag del 2 av Kristian Saug

Løsningsforslag av Svein Arneson


DEL EN

Oppgave 1

a)

$f(x)=x^6 + 3x^5 + ln(x) \\ f'(x)= 6x^5+15x^4 + \frac{1}{x}$

b)

$g(x)=2x^2 \cdot e^{2x-1}\\ g'(x) = 4x \cdot e^{2x-1} + 2x^2 \cdot 2 \cdot e^{2x-1} = (1+x)4x \cdot e^{2x-1}$

c)

$h(x) = \frac{4x-1}{x+2} \\ f'(x) = \frac{4(x+2) - (4x-1)}{(x+2)^2}$

Oppgave 2

Oppgave 3

Oppgave 4

Oppgave 5

Oppgave 6

Oppgave 7

Oppgave 8

DEL TO