R1 2019 høst LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 35: | Linje 35: | ||
===a)=== | ===a)=== | ||
CB er like lang som EB fordi begge linjestykker tangerer samme sirkelsektor ( i C og E). | |||
===b)=== | ===b)=== |
Sideversjonen fra 14. nov. 2019 kl. 11:52
Diskusjon av oppgaven på matteprat
DEL EN
Oppgave 1
a)
$ f(x)=x^4-2x+ln(x) \\ f'(x)= 4x^3-2+ \frac 1x$
b)
$ g(x)= x^7e^x \\ g'(x) = 7x^6e^x + x^7e^x = e^xx^6(7+x) $
c)
$h(x)= \frac{ln(2x)}{x^2} \\ h'(x) = \frac{\frac{1}{2x} \cdot 2 \cdot x^2-2 \cdot x \cdot ln(2x)}{x^4} \\ h'(x)= \frac{1- 2 ln(2x)}{x^3}$
Oppgave 2
$4(ln(a \cdot b^3))-3(ln(a\cdot b^2))-ln(\frac ab) \\ 4 ln(a) + 12 ln(b) - 3ln(a) - 6 ln(b) - ln (a) + ln(b) = 7 ln (b)$
Oppgave 3
Oppgave 4
Oppgave 5
Oppgave 6
Oppgave 7
a)
CB er like lang som EB fordi begge linjestykker tangerer samme sirkelsektor ( i C og E).