S1 2018 vår LØSNING: Forskjell mellom sideversjoner
Fra Matematikk.net
Linje 13: | Linje 13: | ||
===a)=== | ===a)=== | ||
$2x^2-5x+1=x-3 \\ 2x^2-5x-x+1+3 = 0 \\ 2x^2-6x+4=0 \ :2 \\ x^2-3x+2=0$ | $2x^2-5x+1=x-3 \\ 2x^2-5x-x+1+3 = 0 \\ 2x^2-6x+4=0 \: \ :2 \\ x^2-3x+2=0$ | ||
Bruker abc-formelen $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, $a=1$, $b=-3$, $c=2$. | Bruker abc-formelen $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, $a=1$, $b=-3$, $c=2$. | ||
$x=\frac{-(-3)\pm\sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot1} \\ x=\frac{3\pm\sqrt{1}}{2} \\ x_1=\frac{3-1}{2} \vee x_2=\frac{3+1}{2} \\ x_1=1 \vee x_2=2$ | $x=\frac{-(-3)\pm\sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot1} \\ x=\frac{3\pm\sqrt{1}}{2} \\ x_1=\frac{3-1}{2} \vee x_2=\frac{3+1}{2} \\ x_1=1 \vee x_2=2$ |
Sideversjonen fra 2. aug. 2018 kl. 09:18
Løsning laget av mattepratbruker Tommy O.
Løsning laget av LektorNilsen (pdf)
diskusjon av oppgaven på matteprat
DEL1
Oppgave 1
a)
$2x^2-5x+1=x-3 \\ 2x^2-5x-x+1+3 = 0 \\ 2x^2-6x+4=0 \: \ :2 \\ x^2-3x+2=0$
Bruker abc-formelen $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, $a=1$, $b=-3$, $c=2$.
$x=\frac{-(-3)\pm\sqrt{(-3)^2-4\cdot 1 \cdot 2}}{2\cdot1} \\ x=\frac{3\pm\sqrt{1}}{2} \\ x_1=\frac{3-1}{2} \vee x_2=\frac{3+1}{2} \\ x_1=1 \vee x_2=2$