Praktisk romgeometri: Forskjell mellom sideversjoner
Linje 435: | Linje 435: | ||
<div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">'''Eks:'''<p></p> | <div style="padding: 1em; border: 1px blue; background-color: #F8ADB6;">'''Eks:'''<p></p> | ||
$x^2+y^2+z^2+4x-6y-12 =0 \\ (x^2+4x) +(y^2-6y) + z^2 =12$ | |||
</div> | </div> |
Sideversjonen fra 30. nov. 2016 kl. 07:05
Nedenfor finner man en oversikt over de vanligste spørsmål som dukker opp i forbindelse med punkter, linjer og plan.
Punkt
Avstand mellom to punkter
Avstanden d mellom punktene A og B er gitt ved <math>d=|\vec{AB}|= \sqrt{(x_B - x_A)^2 + (y_B -y_A)^2 + (z_B - z_A)^2} </math>
Altså lik lengden av AB vektor.
<math>d = \sqrt{(4 - 1)^2 + (4 -2)^2 + (2 - 3)^2} = \sqrt{9+4+1} = \sqrt{14}</math>
Linje
En rett linje m som går gjennom punktet <math>p = (x_0 , y_0 , z_0) </math> og har retningsvektor <math> \vec{n} = (a, b, c) </math> har parameterfremstillingen:
<math>m: \left[ \begin{align*} x &=x_0+at \\ y &= y_0+bt \\ z &= z_0+ct \end{align*}\right]</math>
I planet er det slik at to linjer som ikke er parallelle vil skjære hverandre. I rommet er det nødvendigvis ikke tilfelle. To linjer som ikke er parallelle og som ikke skjærer hverandre sies å være vindskeive.
Skjæring mellom linjer
Dersom to linjer i rommet skjærer hverandre må det være en parameterverdi for hver av linjene som gir et felles punkt, dvs. samme x-, y-, og z koordinat for begge linjene.
<math>m: \left[ \begin{align*} x &= -1-s\\ y &= 3+s \\ z &= -s \end{align*}\right]</math>
og
<math> n: \left [ \begin{align*}
x = 3-2t\\
y = t \\
Innsatt s = - 2 i linje m gir det punktet (1, 1, 2), og innsatt t = 1 i linje n gir (1, 1, 2).
Konklusjonen er at m og n skjærer hverandre i punktet (1, 1, 2).
Avstand mellom punkt og linje
A er et vilkårlig punkt på linjen l. P er et punkt som ikke ligger på linjen. Arealformelen med vektorproduktet gir:
<math> T = \frac12 \cdot | \vec{AP} \times \vec{v}| </math>
Der <math>\vec{v}</math> er retningsvektoren til l.
Fra ungdomsskolen har man at arealet av en trekant er: <math>T = \frac12 \cdot g \cdot h = \frac12 \cdot |\vec{v}| \cdot h </math>
h er høyden i trekanten, altså den rette linjen fra punktet P som står normalt på linjen l, altså den avstanden man ønsker å finne. Kombinert gir dette:
<math> \frac12 \cdot |\vec{v}| \cdot h = \frac12 \cdot | \vec{AP} \times \vec{v}|</math>
<math> |\vec{v}| \cdot h = | \vec{AP} \times \vec{v}|</math>
<math> h = \frac{ | \vec{AP} \times \vec{v}|}{|\vec{v}|}</math>
Finn avstanden mellom linjen <math>m: \left[ \begin{align*} x &= -1-s\\ y &= 3+s \\ z &= -2s \end{align*}\right]</math>
Punktet A =(-1, 3, 0) ligger på linjen m. Da er $\vec{AP}=[2, -2, 2] \quad og \quad \vec{v} = [-1, 1, -2]$
$ h = \frac{ | \vec{AP} \times \vec{v}|}{|\vec{v}|} = \frac{ | [2, -2, 2] \times [-1, 1, -2]|}{|[-1, 1, -2]| } =\frac{2}{\sqrt{3}}$
Ligger punktet på linja?
Man finner først den parameterverdien som gir planets x verdi lik punktets x verdi. Dersom denne parameterverdien gir tilsvarende verdier for plantes y og z koordinat ligger punktet i planet.
<math>m: \left[ \begin{align*} x &= -1 -s \\ y &= 3 +4st \\ z &= -s \end{align*}\right]</math>
Ligger punktet P =(4,-17,5) på linjen?4=-1-s gir s = -5 innsatt s=-5 for y gir y = 3 +4(-5) = -17 og z = -(-5)= 5 hvilket betyr at punktet ligger på linjen.
Avstand mellom to linjer
Først finner man ut om de to linjene er parallelle, eller om de er vindskeive.
Dersom de er parallelle ser man det ved at retningsvektoren til den ene linjen er lik retningsvektoren til den andre multiplisert med en konstant.
PARALLELLE:
Man velger et punkt på hver av linjene (A og P) og setter inn i:
<math> h = \frac{ | \vec{AP} \times \vec{v}|}{|\vec{v}|}</math>
<math>m: \left[ \begin{align*} x &=-1-s\\ y &= 3+s \\ z &= -2s\end{align*}\right]</math>
<math>n: \left[ \begin{align*} x &=1+t \\ y &= 1-t \\ z &= 2+2t \end{align*}\right]</math>
er parallelle linjer.A = (-1, 3, 0) er et punkt på m, og P = (1, 1, 2) er et punkt på n. Retningsvektor for m er [-1, 1, -2]. Vi får da:
<math> h = \frac{ | \vec{AP} \times \vec{v}|}{|\vec{v}|} = \frac{ | [2, -2, 2] \times [-1, 1, -2]|}{|[-1, 1, -2]| } =\frac{2}{\sqrt{3}} </math>
VINDSKEIVE:
For å finne avstanden mellom to vindskeive linjer må man finne lengden av den linje som står vinkelrett på begge de to vindskeive linjene.
Finn avstanden mellom m og n.
<math>m: \left[ \begin{align*} x &=-1-s\\ y &= 3+s \\ z &= -2s\end{align*}\right]</math>
<math>n: \left[ \begin{align*} x &=1+t\\ y &= 1+t \\ z &= 2-t\end{align*}\right]</math>
<math>P_m = (-1-s, 3+s, -2s) </math> og <math>P_n = (1+t, 1+t, 2-t) </math> som gir <math>\vec{P_mP_n} = [1+t+1+s, 1+t-3-s, 2-t+2s]
= [2+t+s, -2+t-s, 2-t+2s] </math> Da må <math>\vec{v_m} \perp \vec{P_mP_n}</math> og <math>\vec{v_n} \perp \vec{P_mP_n}</math> som gir <math>\vec{v_m} \cdot \vec{P_mP_n} = 0</math> og <math>\vec{v_n} \cdot \vec{P_mP_n} = 0</math> <math>[-1,1,-2] \cdot [2+t+s, -2+t-s, 2-t+2s] = 0</math> og <math> [1,1,-1] \cdot [2+t+s, -2+t-s, 2-t+2s] = 0</math> <math>-2-t- s-2+t-s-4+2t-4s = 0</math> og <math>2+t-s-2+t-s-2+t-2s =0</math> <math>-8+2t-6s = 0</math> og <math>-2 +3t -2s =0</math> <math>t= 3s+4</math> og <math>-2+3(3s+4)-2s = 0</math> <math>t= 2s+4</math> og <math>10+9s = 0</math> <math>t= 2s+4</math> og <math>s= - \frac{10}{7}</math> <math>t= - \frac 27</math> og <math>s= - \frac{10}{7}</math>
Korteste avstånd mellom linjene er den tykke røde streken.
Vinkel mellom to linjer
Vinkelen man søker er A. Man finner vinkelen mellom to linjer ved å finne vinkelen mellom retningsvektorene (skalarprodukt). Den største vinkelen mellom to linjer er 90 grader. Dersom den vinkelen man finner er større enn 90 grader (B), tar man 180 - B = A, som er den man ønsker å finne.
Finn vinkelen mellom m og n. <math> m: \left [ x = -1-s\\ y = 3+s \\ z = -2s \right]</math> og <math> n: \left [ x = 1+t\\ y = 1+t \\ z = 2-t \right]</math>
Rettningsvektorene er <math> \vec{v_m} = [-1,1,-2] </math> og <math> \vec{v_n} = [1,1,-1] </math> <math>cos \alpha = \frac{ \vec{v_m} \cdot \vec{v_n}}{ |\vec{v_m}| \cdot |\vec{v_n}|} = \frac{ [-1,1,-2] \cdot [1,1,-1]}{ \sqrt{6} \cdot \sqrt{3}} = \frac{2}{ \sqrt{18}} </math><math> \alpha = 61,9^{\circ} </math>
Plan
Et plan er definert ved
(1) tre punkter
(2) ett punkt og en linje
(3) to linjer som krysser hverandre
(4) to parallelle linjer
Disse tilfellene er sider av samme sak, man trenger et punkt i planet og informasjon til å finne normalvektor, kryssproduktet mellom to ikke-parallelle vektorer i planet.
<math> a(x-x_0)+b(y-y_0)+c(z-z_0)=0 \\
ax+by+cz+d=0</math> Der a,b og c er koordinatene til planets normalvektor, og $x_0,y_0,z_0$ er et punkt i planet. Parameterfremstillingen for et plan er gitt ved<math>\alpha: \left[ \begin{align*} x &=x_0 + u_xs+v_xt \\ y &=y_0 + u_ys+v_yt \\ z &=z_0 + u_zs+v_zt \end{align*}\right]</math>
Der u og v er vektorer i planet (ikke parallelle).
Vinkel mellom linje og plan
Vinkelen mellom en linje og en plan finner man ved å benytte skalarproduktet mellom retningsvektoren for linja og normalvektoren for planet.
Vinkelen mellom to plan
Vinkelen mellom to plan er den samme som den minste vinkelen mellom planenes normalvektor.
<math> \alpha = 58,5^{\circ}</math>
Avstand linje og plan
Dersom en linje er parallell med planet vil den aldri skjære planet. Det kan da være av interesse å finne avstanden mellom linjen og planet. Man finner et punkt på linjen og benytter metoden vist nedenfor.
Avstand mellom punkt og plan
Man trenger likningen til planet og koordinatene til punktet.
Dersom planet er gitt ved <math> ax+by+c + d = 0</math> og punktet gitt som <math> P = (x_p, y_p, z_p)</math>
er avstanden s mellom punkt og plan gitt som
<math> s = \frac{|ax_p+by_p+cz_p + d|}{\sqrt{a^2+b^2+c^2}}</math>
<math> s = \frac{|ax_p+by_p+cz_p + d|}{\sqrt{a^2+b^2+c^2} }= \frac{|2 \cdot 2 + (-1)\cdot 2 + 1 \cdot 3 - 3|}{\sqrt{2^2+(-1)^2+1^2}} = \frac{|4 -2 + 3 - 3|}{\sqrt{6}}= \frac{2}{\sqrt{6}} </math>
Skjæring mellom to plan
Dersom to plan ikke er parallelle vil de før eller senere skjære hverandre og danne en rett linje. For å finne uttrykket for linjen gjøres følgende: Ta vektorproduktet av planenes normalvektorer, det gir linjens retningsvektor. Sett så inn en vilkårlig x verdi (samme) i begge plans ligninger. Det gir to ligninger med to ukjente. Løs for y og z og man har et punkt på linjen.
Eks:
Vi har planet A: 2x + 3y - z + 3 = 0 og plan B: 4x + 5y + z - 1 = 0
med tilhørende normalvektorer: nA = [2,3,-1] og nB = [4,5,-1]
Man finner retningsvektor til skjæringslinjen ved å ta vektorproduktet til normalvektorene:
nA x nB = [(3+5),(-4-2),(10-12)] = [8,-6,-2] = 2[4,-3,-1]
[4,-3,-1] er en retningsvektor for skjæringslinjen.
I ligningene for plan A og B setter vi x=1 og får:
2 -3y - z + 3 = 0 og 4 + 5y + z - 1 = 0
som gir y = -1 og z = 2 det gir punktet P(1,-1,2)
Skjæringslinjen er da bestemt til: [x,y,z] = [1,-1,2] +t[4,-3,-1] som er det samme som parameterframstillingen:
x = 1 + 4t
y = -1 - 3t
z = 2 - t
Skjæring mellom linje og plan
En rett linje kan ligge i planet. Da er alle punkter på linja også punkter i planet. En rett linje kan ligge parallell med et plan, da har linjen og planet ingen punkter felles. En rett linje kan skjære et plan. Linjen og planet har da et felles punkt.
En linje er gitt som <math>m: \left[ \begin{align*} x &=-1-k\\ y &= 3+k\\ z &= -k\end{align*}\right]</math>
<math>k=- \frac32</math> gir skjæringspunkt <math>( -\frac52 , \frac 32, \frac 32) </math>
Ligger punktet eller linja i planet?
PUNKT
Ligger punktet i planet? Dersom koordinatene til punktet passer i likningen for planet ligger punktet i planet, ellers ikke.
Man setter inn for å se om punktets koordinater passer i likningen for planet. <math> 2 \cdot 2 - 3\cdot 1 +2 -1 =0</math>
LINJE
Dersom en linje ligger i planet er det nok å vise at to punkter på linjen ligger i planet
Et plan er gitt ved: 4x+5y+z-1 =0. Ligger linjen
<math>m: \left[ \begin{align*} x &=1+4t\\ y &= -1-3t \\ z &= 2-t\end{align*}\right]</math>
i planet?Man velger et punkt på linja, t=0 gir (1, -1,2) som innsatt i likningen for planet gir 4 + 5 + 2 - 1 = 0. Velger t=1 og får 20 - 20 + 1 -1 = 0. Linjen ligger i planet.
Kulen
Likningen for en kule
Et vilkårlig punkt S med koordinater $(x_0, y_0, z_0)$ er sentrum i kulen. Et tilfeldig punkt på kuleflaten er P, med koordinater (x, y, z). Lengden av SP vektor er radius i kulen.
Likning for kuleflate
$| \vec{SP}| = r \\ \sqrt{(x-x_0)^2+(y-y_0)^2 +(z-z_0)^2} = r \\ (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$
Likningen over er en hensiktsmessig måte å skrive på dersom man har behov for å kjenne radius og koordinatene til sentrum i kulen. Formenlen er imidlertid ofte multiplisert ut, og da må man ty til metoden med å lage "fullstndige kvadrat".
$x^2+y^2+z^2+4x-6y-12 =0 \\ (x^2+4x) +(y^2-6y) + z^2 =12$
Parameterframstilling for en kule
Skjæring mellom kule og linje
Man setter uttrykket for linjens parameterframstilling inn i likningen for kula.
Skjæring mellom kule og plan
Man finner høyden fra planet, til sentrum av kulen (mindre enn radius av kule, dersom skjæring).