Trigonometriske identiteter: Forskjell mellom sideversjoner

Fra Matematikk.net
Hopp til: navigasjon, søk
Linje 241: Linje 241:




Geometrisk tolkning av de trigonometriske funksjonene.
Figuren nedenfor viser de forskjellige trigonometriske funksjonene inntegnet i enhetssirkelen.


[[Bilde:Trigtolkning.gif]]


Definisjoner:
Det finnes mange trigonometriske identiteter. Her er noen av dem.
----
----


[[kategori:lex]]
[[kategori:lex]]

Sideversjonen fra 3. okt. 2016 kl. 05:13

Spisse vinkler

De trigonometriske funksjonene er sinus, cosinus, tangens. Vanligvis forkortes disse sin, cos, tan. For spisse vinkler defineres de trigonometriske funksjonene som forholdet mellom sidene i en rettvinklet trekant. Vi har:

DEFINISJONER

• <math>sin B = \frac ba </math>

• <math>cos B = \frac ca </math>

• <math>tan B = \frac bc = \frac{sin B}{ cos B}</math>

Enhetssirkelen - sin - cos - tan

De trigonometriske funksjonene begrenser seg ikke til spisse vinkler. Vi tegner en sirkel med radius 1 der positive vinkler kan tenkes framkommet ved en dreining mot klokken og negative vinkler fremkommer ved dreining med klokken. Dette kalles orienterte vinkler. I enhetssirkelen ser vi på orienterte vinkler med absolutte vinkelmål (radianer). Enhetsirkelen legges med sentrum i origo i et ortonormert koordinatsystem, slik at et av vinkelbeina er sammenfallende med den positive x aksen. Det andre vinkelbeinet skjærer sirkelen i punktet (x,y). De trigonometriske funksjonene defineres som følger:



$sin (a) = y \quad \quad cos (a) = x \quad \quad tan (a) = \frac yx $


\\ \\ cot (a) = \frac xy \quad \quad sec (a) = \frac 1x \quad \quad cosec (a) = \frac 1y </math>


Sin og cos har alle perioden $2\pi$. Tan har perioden $\pi$.


Enhetssirkelen og dens fire kvadranter


Identiteter

$sin^2v + cos^2v = 1\quad \quad \color{red}{(1)}$


BEVIS (1):

Relasjonen fremkommer ved å anvende Pytagoras direkte i enhetssirkelen.

$ tan^2v + 1 = sec^2v\quad \quad\quad \quad \color{red}{(2)} \\ cot^2v+1 = csc^2v\quad \quad \color{red}{(3)}$


Hver av de trigonometriske funksjonene uttrykt ved de andre fem.
Uttrykt ved <math> \sin v\!</math> <math> \cos v\!</math> <math> \tan v!</math> <math> \csc v\!</math> <math> \sec v\!</math> <math> \cot v\!</math>
<math> \sin v =\!</math> <math> \sin v \! </math> <math>\pm\sqrt{1 - \cos^2 v}\! </math> <math>\pm\frac{\tan v}{\sqrt{1 + \tan^2 v}}\! </math> <math> \frac{1}{\csc v}\! </math> <math>\pm\frac{\sqrt{\sec^2 v - 1}}{\sec v}\! </math> <math>\pm\frac{1}{\sqrt{1 + \cot^2 v}}\! </math>
<math> \cos v =\!</math> <math>\pm\sqrt{1 - \sin^2 v}\! </math> <math> \cos v\! </math> <math>\pm\frac{1}{\sqrt{1 + \tan^2 v}}\! </math> <math>\pm\frac{\sqrt{\csc^2 v - 1}}{\csc v}\! </math> <math> \frac{1}{\sec v}\! </math> <math>\pm\frac{\cot v}{\sqrt{1 + \cot^2 v}}\! </math>
<math> \tan v =\!</math> <math>\pm\frac{\sin v}{\sqrt{1 - \sin^2 v}}\! </math> <math>\pm\frac{\sqrt{1 - \cos^2 v}}{\cos v}\! </math> <math> \tan v\! </math> <math>\pm\frac{1}{\sqrt{\csc^2 v - 1}}\! </math> <math>\pm\sqrt{\sec^2 v - 1}\! </math> <math> \frac{1}{\cot v}\! </math>
<math> \csc v =\!</math> <math> \frac{1}{\sin v}\! </math> <math>\pm\frac{1}{\sqrt{1 - \cos^2 v}}\! </math> <math>\pm\frac{\sqrt{1 + \tan^2 v}}{\tan v}\! </math> <math> \csc v\! </math> <math>\pm\frac{\sec v}{\sqrt{\sec^2 v - 1}}\! </math> <math>\pm\sqrt{1 + \cot^2 v}\! </math>
<math> \sec v =\!</math> <math>\pm\frac{1}{\sqrt{1 - \sin^2 v}}\! </math>
<math> \frac{1}{\cos v}\! </math> <math>\pm\sqrt{1 + \tan^2 v}\! </math> <math>\pm\frac{\csc v}{\sqrt{\csc^2 v - 1}}\! </math> <math> \sec v\! </math> <math>\pm\frac{\sqrt{1 + \cot^2 v}}{\cot v}\! </math>
<math> \cot v =\!</math> <math>\pm\frac{\sqrt{1 - \sin^2 v}}{\sin v}\! </math> <math>\pm\frac{\cos v}{\sqrt{1 - \cos^2 v}}\! </math> <math> \frac{1}{\tan v}\! </math> <math>\pm\sqrt{\csc^2 v - 1}\! </math> <math>\pm\frac{1}{\sqrt{\sec^2 v - 1}}\! </math> <math> \cot v\! </math>

Sum og differanser av vinkler

$cos(u-v) = cos(u)\cdot cos(v)+sin(u) \cdot sin(v) \quad \quad \color{red}{(2)} \quad \quad cos(u + v) = cos(u)\cdot cos(v)-sin(u)\cdot sin(v) \quad \quad \color{red}{(3)}\\ sin(u - v) = sin(u)\cdot cos(v)-cos(u)\cdot sin(v) \quad \quad \color{red}{(4)}\quad \quad sin(u + v) = sin(u)\cdot cos(v)+cos(u)\cdot sin(v)\quad \quad \color{red}{(5)}$



BEVIS (2):


Vinkelen (u-v) er vinkelen mellom vektorene $\vec{OB}$ og $\vec{OC}$ Begge disse har lengde en.

$\vec{OB}= [\cos v, \sin v] \\ \vec{OC} = [\cos u, \sin u]$

Skalarprodukt:

$ [\cos u, \sin u] \cdot [\cos v, \sin v] = 1 \cdot 1 \cdot \cos(u-v) \\ \cos(u-v) = \cos u \cos v + \sin u \sin v \quad \quad \color{red}{(2)}$




BEVIS (3):

Fra (2): Setter u = 0, cos 0 = 1 og sin 0 = 0:

$\cos(-v)= \cos v \quad \quad \color{red}{(2)}$

Bruker (1) og (2) og får:

$\cos(u-v) = \cos(u-(-v)) = \cos u \cos (-v) + \sin u \sin (-v) \quad \quad \color{red}{(1)} \ \cos(-v)= \cos v \wedge \sin(-v) = - \sin v \\ så: \\ \cos( u+v)= \cos u \cos v - \sin u \sin v \quad \quad \color{red}{(3)}$

Dobble vinkler

<math>sin(2u) = 2sin(u) \cdot cos(u) </math>


<math>\cos(2u) = cos (u+u) \\ = \cos (u) \cos (u) - \sin (u) \sin (u)= \cos^2 (u) - \sin^2 (u) </math>


<math>1 + cos(2u) = 2 cos^2 (u)</math>


<math>1 - cos(2u) = 2 sin^2 (u)</math>


Dersom u + v = 180° har vi at Sin v = sin u og cos v = -cos u


Flere funksjoner

Nedenfor følger en rekke trigonometriske identiteter. Noen er pensum i norsk skole (R2), andre ikke. Vi mener det er riktig å vise alle, da noen av dere kan komme til å studere i land der disse er pensum.


De tre neste er ikke pensum, men greie å kjenne til:

• <math>cot B = \frac cb = \frac{ cos B}{sin B} = \frac {1}{tan B}</math>

• <math>sec B = \frac ac = \frac{1}{cos B}</math>

• <math>cosec B = \frac ab = \frac{1}{sin B} </math>

Ved observasjon ser vi at fortegnet til en trigonometrisk funksjon varierer avhengig av hvilken kvadrant man befinner seg i. Nedenfor følger en oversikt.

Kvadrant I II III IV
cos pos neg neg pos
sin pos posneg neg
tan pos negpos neg
cot posneg pos neg
sec pos neg neg pos
cosec pos pos neg neg


Geometrisk tolkning av de trigonometriske funksjonene. Figuren nedenfor viser de forskjellige trigonometriske funksjonene inntegnet i enhetssirkelen.


Definisjoner:

Det finnes mange trigonometriske identiteter. Her er noen av dem.