2P 2016 vår LØSNING: Forskjell mellom sideversjoner
Linje 85: | Linje 85: | ||
Skriver alle tallene på standardform: | Skriver alle tallene på standardform: | ||
$ 0,046\cdot 10^{ | $ 0,046\cdot 10^{11}= 4,6 \cdot 10^{9} \\ \frac{46}{1000000}= 0,000046 = 4,6 \cdot 10^{-5} \\ 46\cdot 10^{-7} =4,6 \cdot 10^{-6}$ | ||
==Oppgave 9)== | ==Oppgave 9)== |
Sideversjonen fra 5. aug. 2016 kl. 09:06
Diskusjon av denne oppgaven på matteprat
Del 1 Løsningsforslag laget av mattepratbruker jøgge
Del 2 Løsningsforslag laget av mattepratbruker jøgge
Løsningsforslag fra mattepratbruker Oyan
DEL EN
Oppgave 1)
-6, -4, 0, 2, 2, 6.
Variasjonsbredde: 6 - ( - 6 ) = 12
Variasjonsbredden er 12 grader.
Median: $\frac {0+2}{2} = 1$
Median er 1 grad.
Gjennomsnitt: $\frac{-6 +(-4)+0+2+2+6}{6} = \frac 06 =0$
Gjennomsnittsteperaturen denne perioden er null grader celsius.
Oppgave 2)
Forutsetter at en måned er 30 dager.
$7500 000 000 \cdot 2 \cdot 30 = \\ 7,5 \cdot 10^9 \cdot 6,0 \cdot 10 = \\7,5 \cdot 6,0 \cdot 10^{10} = \\ 45 \cdot 10^{10} = 4,5 \cdot 10^{11}$
Oppgave 3)
Ptis bukse i butikk A: 150 kr, og i butikk B: 120 kr.
a)
$\frac{150-120}{120} = \frac 14 = 25$%
Buksene er 25% dyrere i butikk A, i forhold til i butikk B.
b)
$\frac{150-120}{150} = \frac 15 = 20$%
Buksene er 20% billigere i butikk B, i forhold til i butikk A.
Oppgave 4)
Oppgave 5)
a)
b)
c)
Oppgave 6)
a)
b)
c)
Oppgave 7)
a)
Dersom noe øker eksponentielt betyr det at det vokser med en fast prosent hver tidsperiode.
b)
b er eneste kurve som oppfuller kravet i a. c vokser lineært, altså med en fast størrelse hver tidsperiode. a vokser mindre etter en stund, noe som kan minne om logistisk vekst (ikke pensum i 2P).
Oppgave 8)
Skriver alle tallene på standardform:
$ 0,046\cdot 10^{11}= 4,6 \cdot 10^{9} \\ \frac{46}{1000000}= 0,000046 = 4,6 \cdot 10^{-5} \\ 46\cdot 10^{-7} =4,6 \cdot 10^{-6}$