R1 2016 vår LØSNING: Forskjell mellom sideversjoner
Linje 216: | Linje 216: | ||
===c)=== | ===c)=== | ||
$T´(x)= 5e^{- \frac x2} + 5x(- \frac 12) e^{- \frac x2} = (5-2,5x)e^{- \frac x2}$ | |||
Ser at eneste eksteremalpunkt er for x=2 : $T(2) = 10e^{-1} = \frac{10}{e} \approx 3,68$ | |||
==Oppgave 3== | ==Oppgave 3== |
Sideversjonen fra 20. jul. 2016 kl. 13:20
Løsningsforslag (pdf) fra bruker joes. Send gjerne en melding hvis du har kommentarer til løsningsforslaget. På forhånd, takk.
Løsningsforslag (pdf) fra bruker LektorH.
Løsningsforslag (pdf) fra bruker Claves
DEL EN
Oppgave 1
a)
$f(x)=-3x^2+6x-4$
$f'(x)=-6x+6= -6(x-1)$
b)
$g(x)=5\ln(x^3-x)$
$g'(x)=\frac{5(3x^2-1)}{x^3-x}=\frac{15x^2-5}{x^3-x}$
c)
$h(x)=\frac{x-1}{x+1}$
$h'(x)=\frac{x+1-(x-1)}{(x+1)^2}=\frac{2}{(x+1)^2}$
Oppgave 2
a)
$p(x)=x^3-7x^2+14x+k$
$p(x)$ er delelig med $(x-2)$ hvis og bare hvis $p(2)=0$
$p(2)=8-7\cdot4+14\cdot2+k=8-28+28+k=8+k$
$8+k=0$
$k=-8$
b)
$ \quad x^3-7x^2+14x-8 :(x-2)= x^2 - 5x + 4 \\ -(x^3-2x^2) \\ \quad \quad-5x^2 + 14x -8 \\ \quad \quad -(-5x^2 -10x) \\ \quad \quad \quad \quad \quad (4x -8)$
$x= \frac{5 \pm \sqrt{25 - 16}}{2} \\ x= 1 \vee x =4 \\ \\ P(x)= (x-1)(x-2)(x-4)$
c)
$P(x) \leq 0 $
$x \in < \leftarrow,1] \cup [2,4]$
Oppgave 3
a)
$f(x)=x^2e^{1-x^2}$
$f'(x)=2xe^{1-x^2}+x^2\cdot-2xe^{1-x^2}=2xe^{1-x^2}(1-x^2)$
b)
$f´(x)=0 \\ x= -1 \vee x=0 \vee x=1$
Den deriverte er positiv for x < -1, negativ for -1<x<0, positiv for 0<x<1 og negativ for x >1. Det git toppunkt for x= -1 og x = 1 og minimum for x = 0.
Topp: (-1, f( -1)) gir (-1,1) og (1,f(1)) gir (1,1)
Bunn: (0, f(0)) git (0,0)
c)
d)
Grafen til f har fire vendepunkter.
Oppgave 4
a)
$AB=AC=BC=6 \ cm$
$HB=\frac{1}{2}AB=3 \ cm$
$CH=\sqrt{(BC)^2-(HB)^2}=\sqrt{6^2-3^2} \ cm=\sqrt{27}=\sqrt{3^3} \ cm=3\sqrt{3} \ cm$
$CF=CE=\sqrt{(BC)^2+(BE)^2}=\sqrt{6^2+6^2} \ cm=\sqrt{2\cdot6^2} \ cm=6\sqrt{2} \ cm$
$HF=\sqrt{(CF)^2-(CH)^2}=\sqrt{72-27} \ cm=\sqrt{45} \ cm=\sqrt{9\cdot5} \ cm=3\sqrt{5} \ cm$
b)
$\frac{AF}{AB}=\frac{3+3\sqrt{5}}{6}=\frac{3(1+\sqrt{5})}{2\cdot3}=\frac{1+\sqrt{5}}{2}=\phi$
Oppgave 5
a)
$\vec{AB} =[5-1,2-1] = [4, 1] \\ \vec{AC} = [3-1, 5-1]=[2,4] \\ \vec{AB} \neq k \vec{AC}$
Punktene A, B og C ligger ikke på en rett linje.
b)
$\vec{CD} = [-3, t - 5] \\ \vec{DA} = [1, 1- t] \\ \vec{CD} \cdot \vec{DA} =0 \\ [-3, t-5] \cdot [ 1, 1-t] = 0 \\ -3 + (t-5)(1-t)= 0 \\ -t^2+6t - 8 = 0 \\ t= 2 \vee t =4$
c)
Det er to muligheter: AB || CD eller BC || AD.
Oppgave 6
a)
Antall mulige fagkombinasjoner med 2 realfag og 2 andre fag:
${5\choose2}\cdot{8\choose2}=\frac{5\cdot4}{2!}\cdot\frac{8\cdot7}{2!}=10\cdot28=280$
b)
Antall mulige fagkombinasjoner med 4 fag hvor minst 2 er realfag:
${5\choose2}\cdot{8\choose2}+{5\choose3}\cdot{8\choose1}+{5\choose4}=280+\frac{5\cdot4\cdot3}{3!}\cdot8+5=280+80+5=365$
Oppgave 7
a)
Nullpunktene til f er (-2, 0) og (4, 0).
b)
$f(x)=x^2+px+q$
$A=(0,1)$
$B=(-p,q)$
$\vec{OS}=\vec{OA}+\frac{1}{2}\vec{AB}=[0,1]+\frac{1}{2}[-p,q-1]=[\frac{-p}{2},1+\frac{q-1}{2}]=[\frac{-p}{2},\frac{q+1}{2}]$
$S=(\frac{-p}{2},\frac{q+1}{2})$
$r=|\vec{AS}|=\sqrt{(\frac{-p}{2})^2+(\frac{q-1}{2})^2}=\sqrt{\frac{p^2+(q-1)^2}{4}}=\frac{\sqrt{p^2+(q-1)^2}}{2}$
c)
Likning for sirkel:
$(x-x_1)^2+(y-y_1)^2=r^2$
$(x+\frac{p}{2})^2+(y-\frac{q+1}{2})^2=\frac{p^2+(q-1)^2}{4}$
Skjæring med x-aksen:
$y=0$
$(x+\frac{p}{2})^2+(-\frac{q+1}{2})^2=\frac{p^2+(q-1)^2}{4}$
$(x+\frac{p}{2})^2=\frac{p^2+(q-1)^2}{4}-\frac{(q+1)^2}{4}$
$x+\frac{p}{2}=\frac{\pm \sqrt{p^2-4q}}{2}$
$x=\frac{-p \pm \sqrt{p^2-4q}}{2}$
Nullpunkter til $f(x)$:
$x^2+px+q=0$
$x=\frac{-p \pm \sqrt{p^2-4q}}{2}$
Sirkelen skjærer x-aksen i nullpunktene til $f(x)$.
DEL TO
Oppgave 1
a)
Det er to bunker:
$P(F) = P( \bar{F})= 0,5$
To røde kort fra bunke A:
$ P(R|F) = \frac 58 \cdot \frac 47 = \frac {5}{14}$
To røde kort fra bunke B:
$P(R| \bar{F})= \frac 37 \cdot \frac 26 = \frac 17$
b)
Den totale sannsynligheten for to røde kort:
$P(R) = P(F) \cdot P(R|F) + P(\bar{F}) \cdot P(R|\bar{F})=$
c)
Oppgave 2
a)
b)
Arealet av et rektangel er lengde multiplisert med bredde:
Dersom lengden er x, er bredden f(x), Altså $T(x) = x\cdot f(x) = x \cdot 5e^{-\frac{x}{2}} = 5xe^{- \frac{x}{2}}$
c)
$T´(x)= 5e^{- \frac x2} + 5x(- \frac 12) e^{- \frac x2} = (5-2,5x)e^{- \frac x2}$
Ser at eneste eksteremalpunkt er for x=2 : $T(2) = 10e^{-1} = \frac{10}{e} \approx 3,68$